Remodeling of ion channels is an important mechanism of arrhythmia induced by heart failure (HF). We investigated the expression of potassium channel encoding genes in the ventricles of rabbit established by volumeo...Remodeling of ion channels is an important mechanism of arrhythmia induced by heart failure (HF). We investigated the expression of potassium channel encoding genes in the ventricles of rabbit established by volumeoverload operation followed with pressure-overload. The reversible effect of these changes with bisoprolol was also evaluated. The HF group exhibited left ventricular enlargement, systolic dysfunction, prolongation of corrected QT interval (QTc), and increased plasma brain natriuretic peptide levels in the HF rabbits. Several potassium channel subunit encoding genes were consistently down-regulated in the HF rabbits. After bisoprolol treatment, heart function was improved significantly and QTc was shortened. Additionally, the mRNA expression of potassium channel subunit genes could be partially reversed. The down-regulated expression of potassium channel subunits Kv4.3, Kv1.4, KvLQT1, minK and Kir 2.1 may contribute to the prolongation of action potential duration in the heart of rabbits induced by volume combined with pressure overload HF. Bisoprolol could partially reverse these down-regulations and improve heart function.展开更多
Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties ...Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties of the PDC source with certain distribution, such as the brightness and photon channel transmissions, we only need to measure the singles and coincidences counts in a few seconds. Furthermore, we validate the model by applying it to a PDC source generating highly non-degenerate photon pairs. The results of the experiment indicate that our method is more simple, efficient, and less time consuming.展开更多
基金supported by the State Key Program of the National Natural Science Foundation of China (No. 30830051)
文摘Remodeling of ion channels is an important mechanism of arrhythmia induced by heart failure (HF). We investigated the expression of potassium channel encoding genes in the ventricles of rabbit established by volumeoverload operation followed with pressure-overload. The reversible effect of these changes with bisoprolol was also evaluated. The HF group exhibited left ventricular enlargement, systolic dysfunction, prolongation of corrected QT interval (QTc), and increased plasma brain natriuretic peptide levels in the HF rabbits. Several potassium channel subunit encoding genes were consistently down-regulated in the HF rabbits. After bisoprolol treatment, heart function was improved significantly and QTc was shortened. Additionally, the mRNA expression of potassium channel subunit genes could be partially reversed. The down-regulated expression of potassium channel subunits Kv4.3, Kv1.4, KvLQT1, minK and Kir 2.1 may contribute to the prolongation of action potential duration in the heart of rabbits induced by volume combined with pressure overload HF. Bisoprolol could partially reverse these down-regulations and improve heart function.
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant Nos.XDB01030100 and XDB01030300)the National Key Research and Development Program of China(Grant No.2016YFA0302600)the National Natural Science Foundation of China(Grant Nos.61475148 and 61575183)
文摘Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties of the PDC source with certain distribution, such as the brightness and photon channel transmissions, we only need to measure the singles and coincidences counts in a few seconds. Furthermore, we validate the model by applying it to a PDC source generating highly non-degenerate photon pairs. The results of the experiment indicate that our method is more simple, efficient, and less time consuming.