For the simulation of the three-dimensional(3D)nearshore circulation,a 3D hydrodynamic model is developed by taking into account the depth-dependent radiation stresses.Expressions for depth-dependent radiation stres...For the simulation of the three-dimensional(3D)nearshore circulation,a 3D hydrodynamic model is developed by taking into account the depth-dependent radiation stresses.Expressions for depth-dependent radiation stresses in the Cartesian coordinates are introduced on the basis of the linear wave theory,and then vertical variations of depth-dependent radiation stresses are discussed.The 3D hydrodynamic model of ELCIRC(Eulerian-Lagrangian CIRCulation)is extended by adding the terms of the depth-dependent or depth-averaged radiation stresses in the momentum equations.The wave set-up,set-down and undertow are simulated by the extended ELCIRC model based on the wave fields provided by the experiment or the REF/DIF wave model.The simulated results with the depth-dependent and depth-averaged radiation stresses both show good agreement with the experimental data for wave set-up and set-down.The undertow profiles predicted by the model with the depth-dependent radiation stresses are also consistent with the experimental results,while the model with the depth-averaged radiation stresses can not reflect the vertical distribution of undertow.展开更多
为了恢复页岩气井的正常生产,提出一种新型射流泵排水采气工艺设计思想,该设计是以常压高气液比页岩气井的产气量能够满足携液要求时的井筒动液面为分析目标,从气井产能和临界携液流量两个方面进行分析,研究确定射流泵的下深。该工艺在X...为了恢复页岩气井的正常生产,提出一种新型射流泵排水采气工艺设计思想,该设计是以常压高气液比页岩气井的产气量能够满足携液要求时的井筒动液面为分析目标,从气井产能和临界携液流量两个方面进行分析,研究确定射流泵的下深。该工艺在XX区块XX井开展了现场试验,措施后页岩气井的平均日产气量为14.86×10^4 m^3,平均日产液量12.39 m 3,现场生产结果表明:本设计对XX区块常压高气液比页岩气井射流泵的下泵深度的确定提供了新的理论指导。展开更多
基金supported bythe National Natural Science Foundation of China(Grant No.50279029)
文摘For the simulation of the three-dimensional(3D)nearshore circulation,a 3D hydrodynamic model is developed by taking into account the depth-dependent radiation stresses.Expressions for depth-dependent radiation stresses in the Cartesian coordinates are introduced on the basis of the linear wave theory,and then vertical variations of depth-dependent radiation stresses are discussed.The 3D hydrodynamic model of ELCIRC(Eulerian-Lagrangian CIRCulation)is extended by adding the terms of the depth-dependent or depth-averaged radiation stresses in the momentum equations.The wave set-up,set-down and undertow are simulated by the extended ELCIRC model based on the wave fields provided by the experiment or the REF/DIF wave model.The simulated results with the depth-dependent and depth-averaged radiation stresses both show good agreement with the experimental data for wave set-up and set-down.The undertow profiles predicted by the model with the depth-dependent radiation stresses are also consistent with the experimental results,while the model with the depth-averaged radiation stresses can not reflect the vertical distribution of undertow.
文摘为了恢复页岩气井的正常生产,提出一种新型射流泵排水采气工艺设计思想,该设计是以常压高气液比页岩气井的产气量能够满足携液要求时的井筒动液面为分析目标,从气井产能和临界携液流量两个方面进行分析,研究确定射流泵的下深。该工艺在XX区块XX井开展了现场试验,措施后页岩气井的平均日产气量为14.86×10^4 m^3,平均日产液量12.39 m 3,现场生产结果表明:本设计对XX区块常压高气液比页岩气井射流泵的下泵深度的确定提供了新的理论指导。