The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the fo...The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the formation mechanism of shallow normal faults, remain unclear. Meanwhile, the factors affecting the continuity of plane faults must be comprehensively discussed. Clarifying the development characteristics and deformation mechanisms of the Makran accretionary wedge is crucial to effectively guide the exploration of gas hydrate deposits in the area. This study aims to interpret seismic data to identify typical structures in the Makran accretionary wedge, including deep imbricate thrust faults, shallow and small normal faults, wedge-shaped piggyback basins, mud diapirs with fuzzy and disorderly characteristics of reflection, décollements with a northward tilt of 1° – 2°, and large seamounts. Physical simulation-based experiments are performed to comprehensively analyze the results of the plane, section, and slices of the wedge. Results reveal that the distances between and shapes of thrust faults in the deep parts of the Makran accretionary wedge are controlled by the bottom décollement. The uplift of the thrust fault-related folds and the upwelling of the mud diapirs primarily contribute to the formation of small normal faults in the shallow part of the area. The mud diapirs originate from plastic material at the bottom, while those that have developed in the area near the trench are larger. Seamounts and mud diapirs break the continuity of fault plane distribution.展开更多
The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important...The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock.In this paper,the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No.8 was investigated using the discrete element method and theoretical analysis.The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC^(3D),and the rock-breaking degree,stress of the cutter,and rock-breaking specific energy were analyzed.The rock damage caused by the cutter in a specific section was divided into three stages:the advanced influence,crushing,and stabilizing stages.The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions.The disc cutter(wedge tooth cutter)has the highest rock-breaking efficiency at a cutter spacing of 100 mm(110 mm)and a penetration depth of 8 mm(10 mm),and the rock-breaking specific energy is 11.48 MJ/m^(3)(12.05 MJ/m^(3)).Therefore,two types of cutters with different penetration depths or cutter spacing should be considered.The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield.The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.展开更多
The complex fluid-dynamic instabilities and shock waves occurring along the surface of a two-dimensional wedge at high values of the Mach number are studied here through numerical solution of the governing equations.M...The complex fluid-dynamic instabilities and shock waves occurring along the surface of a two-dimensional wedge at high values of the Mach number are studied here through numerical solution of the governing equations.Moreover,a regression model is implemented to determine the pressure distribution for various Mach numbers and angles of incidence.The Mach number spans the interval from 1.5 to 12.The wedge angles(θ)are from 5°to 25°.The pressure ratio(P2/P1)is reported at various locations(x/L)along the 2D wedge.The results of the numerical simulations are compared with the regression model showing good agreement.展开更多
ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their grea...ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their greatest advantages. Wheels torques are precisely and swiftly controlled thanks to electric motors and their advanced driving techniques. In this paper, a regenerative-ABS control RABS is proposed for all-in-wheel-motors-drive EVs. The RABS is realized as a pure electronic braking system called brake-by-wire. A coordination strategy is suggested to control RABS compromising three layers. First, wheels slip control takes place, and braking torque is calculated in the higher layer. In the coordinate interlayer, torque is allocated between actuators ensuring maximal energy recovery and vehicle stability. While in the lower layer, actuator control is performed. The RABS effectiveness is validated on a 3-DOF EVSimulink model through two straight-line braking manoeuvres with low and high initial speeds of 50 km/h and 150 km/h, respectively. Both regular and emergency braking manoeuvres are considered with ABS enabled and disabled for comparison. Simulation results showed the high performance of the proposed RABS control in terms of vehicle stability, brake response, stopping distance, and battery re-charging.展开更多
The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and nea...The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.展开更多
When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation ref...When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.展开更多
An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to captur...An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to capture the shock wave.The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections:the ZND model-like strcuture,single-sided triple point structure and dual-headed triple point strucuture.The first structure is the smooth straight,and the second has the characteristic of the triple points propagating dowanstream only with the same velocity,while the dual-headed triple point structure is very complicated.The detonation waves facing upstream and downstream propagate with different velocities,in which the periodic collisions of the triple points cause the oscillation of the detonation wave front.This oscillation process has temporal and spatial periodicity.In addition,the triple point trace are recorded to obtain different cell structures in three sections.展开更多
The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave fiel...The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and effi- ciently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.展开更多
Cross-wedge rolling (CWR) is a metal process of ro ta ry forming. To produce a part, one cylindrical billet should be placed between t wo counterrotating and wedge-shape dies, which move tangentially relative each oth...Cross-wedge rolling (CWR) is a metal process of ro ta ry forming. To produce a part, one cylindrical billet should be placed between t wo counterrotating and wedge-shape dies, which move tangentially relative each other. The billet suffers plastic deformation (essentially, localized compressio n) during its rotation between the rotating dies. Compared to other numerical si mulation methods, the finite element method (FEM) has advantages in solving gene ral problems with complex shapes of the formed parts. In cross-wedge rolling, t here are four stages in the workpiece deformation process, namely knifing, guidi ng, stretching and sizing stage. It is time-consuming and expensive to design t he CWR process by trial and error method. The application of numerical simul ation for the CWR process will help engineers to efficiently improve the process development. Tselikov, Hayama, Jain and Kobayashi, and Higashimo applied the sl ip-line theory in study of CWR process analysis. Zb.pater studied CWR process i ncluding upsetting by upper-bound method. The above numerical simulation were b ased on the two-dimensional plain-strain assumption ignored the metal flow in workpiece axial direction. Therefore, the complex three-dimensional stress and deformation involved in CWR processes were not presented. Compared to other nume rical simulation methods, the finite element method (FEM) has advantages in solv ing general problems with complex shapes of the formed parts. As yet, a few 3-D finite element simulation studies on CWR process have been reported in literatu res. In this paper, the process of cross wedge rolling (CWR) has been simulated and analyzed by 3D rigid-plastic finite element method. Considering the charact eristic of CWR, the static implicit FEM program is selected. The models proposed in this study uses the commercial code DEFORM 3D to simulate the CWR process. T his is an implicit Lagrangian finite element code, which includes many new enhan cements functions. A new method of utilizing multiple processors using the MPI s tandard has been implemented. Automatic switching between the two different defo rmation solvers (Sparse Solver and Conjugate Gradient Solver) has also been impl emented in order to increase the speed of simulations. In this paper, all stages in CWR process are simulated to be able to closely understand and analyze the a ctual CWR process. For simulating all forming stages in CWR process, the dynam ic adaptive remeshing technology for tetrahedral solid elements was applied. T he stress distributions in cross section of forming workpiece are analyzed to in terpret fracture or rarefaction in the center of workpiece. Authors also analyze d the time-torque curve and the laws of load changing.展开更多
The metal microstructure during the hot forming process has a significant effect on the mechanical properties of final products. To study the microstructural evolution of the cross wedge rolling (CWR) process, the m...The metal microstructure during the hot forming process has a significant effect on the mechanical properties of final products. To study the microstructural evolution of the cross wedge rolling (CWR) process, the microstructural model of GH4169 alloy was programmed into the user subroutine of DEFORM-3D by FORTRAN. Then, a coupled thermo-mechanical and microstructural simulation was performed under different conditions of CWR, such as area reduction, rolling temperature, and roll speed. Comparing experimental data with simulation results, the difference in average grain size is from 11.2% to 33.4% so it is verified that the mierostructural model of GH4169 alloy is reliable and accurate. The fine grain of about 12-15 p.m could be obtained by the CWR process, and the grain distribution is very homogeneous. For the symmetry plane, increasing the area reduction is helpful to refine the grain and the value should be around 61%. Moreover, when the roiling temperature changes from 1000 to 1100℃ and the roll speed from 6 to 10 r.min-1, the grain size of the rolled piece decreases first and then increases. The temperature may be better to choose the value around 1050℃ and the speed less than 10 r-min-1.展开更多
The hollow parts formed with cross-wedge rolling (CWR) have a wide application in many fields, such as architecture and automobile, etc. But the finished configuration of part’s cross section was always ellipse and i...The hollow parts formed with cross-wedge rolling (CWR) have a wide application in many fields, such as architecture and automobile, etc. But the finished configuration of part’s cross section was always ellipse and it was hard to make it satisfied with traditional forming process. This paper proposed a FEM model of hollow workpiece of CWR in the sizing process, and simulated the deformation condition using the ANSYS program. Three kinds of parts with different wall thickness were calculated. Some stress and strain fields of the deformed hollow parts at various conditions are gained. The influence of wall thickness on the distribution of stress and strain was analyzed. The paper also found two phenomena, which never have been seen at traditional experiment, and author tried to give some explanations. The ANSYS program provided the relationship between the tolerance of the deformed workpiece and the deforming parameter. It is helpful to design the sizing dies of a new precise forming process of hollow parts on the CWR. The new process that designed through the information of FEM improved the accuracy of hollow parts on CWR. It proved the validity and practicability of numerical simulation.展开更多
A rigid-plastic finite element method(FEM) simulation model for a multi-wedge cross wedge rolling(MCWR) was developed to analyze an asymmetric stepped shaft. To evaluate the MCWR process and better understand its defo...A rigid-plastic finite element method(FEM) simulation model for a multi-wedge cross wedge rolling(MCWR) was developed to analyze an asymmetric stepped shaft. To evaluate the MCWR process and better understand its deformation characteristics, the material flowing mechanisms, temperature distributions, strain and rolling force were analyzed. The correctness of the finite element simulation is experimentally verified. Numerical simulations and experiments led to the following conclusions: when α=36° and β=7.5°, the quality of the work piece can be significantly improved. Finally, the development of the asymmetric stepped shaft is applied to industrial production.展开更多
A 65-year old woman was admitted to our hospital with abdominal pain. Computed tomography showed a tumor measuring about 3 cm in diameter with no metastatic lesion or signs of local infiltration. Gastroduodenal endosc...A 65-year old woman was admitted to our hospital with abdominal pain. Computed tomography showed a tumor measuring about 3 cm in diameter with no metastatic lesion or signs of local infiltration. Gastroduodenal endoscopy revealed the presence of a submucosal tumor in the third portion of the duodenum and biopsy revealed tumor cells stained positive for c-kit. These findings were consistent with gastrointestinal stromal tumors(GISTs) and we performed a wedge resection of the duodenum, sparing the pancreas. The postoperative course was uneventful and she was discharged on day 6. Surgical margins were negative. Histology revealed a GIST with a diameter of 3.2 cm and 【 5 mitoses/50 high power fields, indicating a low risk of malignancy. Therefore, adjuvant therapy with imatinib was not initiated. Wedge resection with primary closure is a surgical procedure that can be used to treat low malignant potential neoplasms of the duodenum and avoid extensive surgery, with significant morbidity and possible mortality, such as pancreatoduodenectomy.展开更多
Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring a...Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring at the surface of the pit walls may be identified through three-dimensional(3D) image analysis combined with the discrete fracture network(DFN) approach. Kinematic analysis based on polyhedral modelling can be used for first pass analysis but cannot capture composite failure mechanisms involving both structurally controlled and rock mass progressive failures. A methodology is proposed in this paper to overcome such limitations by coupling DFN models with geomechanical simulations based on the discrete element method(DEM). Further, high resolution photogrammetric data are used to identify valid model scenarios. An identified wedge failure that occurred in an Australian coal mine is used to validate the methodology. In this particular case, the failure surface was induced as a result of the rock mass progressive failure that developed from the toe of the structure inside the intact rock matrix. Analysis has been undertaken to determine in what scenarios the measured and predicted failure surfaces can be used to calibrate strength parameters in the model.展开更多
We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical ...We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical wavelength resolution. We analyze the near-field intensity distribution of the tip of the metallic wedge by the FDTD method, and study the total intensity as well as the total potential of optical potentials and van der Waals potentials for 87 Rb atoms in the light field of one pair and two pairs of tips of metallic wedges. It shows that the total potentials of one pair and two pairs of tips of metallic wedges can generate a gravito-optical trap and a dark closed trap for nanoscale guiding of neutral cold atoms. Guided atoms can be cooled with efficient intensity-gradient Sisyphus cooling by blue-detuned light field. This provides an important step towards the generation of hybrid systems consisting of isolated atoms and solid devices.展开更多
The aim of this paper is to investigate numerically the boundary layer forced convection flow of a Casson fluid past a symmetric porous wedge. Similarity transformations are used to convert the governing partial diffe...The aim of this paper is to investigate numerically the boundary layer forced convection flow of a Casson fluid past a symmetric porous wedge. Similarity transformations are used to convert the governing partial differential equations into ordinary ones. With the help of the shooting method, the reduced equations are then solved numerically. Comparisons are made with the previously published results in some special cases and they are found to be in excellent agreement with each other. The results obtained in this study are illustrated graphically and discussed in detail. The velocity is found to increase with an increasing Falkner-Skan exponent whereas the temperature decreases. With the rise of the Casson fluid parameter, the fluid velocity increases but the temperature is found to decrease in this case. Fluid velocity is suppressed with the increase of suction. The skin friction decreases with the increasing value of Casson fluid parameter. It is found that the temperature decreases as the Prandtl number increases and thermal boundary layer thickness decreases with the increasing value of Prandtl number. A significant finding of this investigation is that flow separation can be controlled by increasing the value of the Casson fluid parameter as well as by increasing the amount of suction.展开更多
基金funded by the National Natural Science Foundation of China(No.42076069).
文摘The Makran accretionary wedge has the smallest subduction angle among any accretionary prism in the world. The factors controlling the spacing and morphological development of its deep thrust faults, as well as the formation mechanism of shallow normal faults, remain unclear. Meanwhile, the factors affecting the continuity of plane faults must be comprehensively discussed. Clarifying the development characteristics and deformation mechanisms of the Makran accretionary wedge is crucial to effectively guide the exploration of gas hydrate deposits in the area. This study aims to interpret seismic data to identify typical structures in the Makran accretionary wedge, including deep imbricate thrust faults, shallow and small normal faults, wedge-shaped piggyback basins, mud diapirs with fuzzy and disorderly characteristics of reflection, décollements with a northward tilt of 1° – 2°, and large seamounts. Physical simulation-based experiments are performed to comprehensively analyze the results of the plane, section, and slices of the wedge. Results reveal that the distances between and shapes of thrust faults in the deep parts of the Makran accretionary wedge are controlled by the bottom décollement. The uplift of the thrust fault-related folds and the upwelling of the mud diapirs primarily contribute to the formation of small normal faults in the shallow part of the area. The mud diapirs originate from plastic material at the bottom, while those that have developed in the area near the trench are larger. Seamounts and mud diapirs break the continuity of fault plane distribution.
基金Supported by National Natural Science Foundation of China(Grant Nos.51608521,51809264)Beijing Municipal Major Achievements Transformation and Industrialization Projects of Central Universities(Grant No.ZDZH20141141301)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYLJ06).
文摘The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock.In this paper,the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No.8 was investigated using the discrete element method and theoretical analysis.The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC^(3D),and the rock-breaking degree,stress of the cutter,and rock-breaking specific energy were analyzed.The rock damage caused by the cutter in a specific section was divided into three stages:the advanced influence,crushing,and stabilizing stages.The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions.The disc cutter(wedge tooth cutter)has the highest rock-breaking efficiency at a cutter spacing of 100 mm(110 mm)and a penetration depth of 8 mm(10 mm),and the rock-breaking specific energy is 11.48 MJ/m^(3)(12.05 MJ/m^(3)).Therefore,two types of cutters with different penetration depths or cutter spacing should be considered.The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield.The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.
文摘The complex fluid-dynamic instabilities and shock waves occurring along the surface of a two-dimensional wedge at high values of the Mach number are studied here through numerical solution of the governing equations.Moreover,a regression model is implemented to determine the pressure distribution for various Mach numbers and angles of incidence.The Mach number spans the interval from 1.5 to 12.The wedge angles(θ)are from 5°to 25°.The pressure ratio(P2/P1)is reported at various locations(x/L)along the 2D wedge.The results of the numerical simulations are compared with the regression model showing good agreement.
文摘ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their greatest advantages. Wheels torques are precisely and swiftly controlled thanks to electric motors and their advanced driving techniques. In this paper, a regenerative-ABS control RABS is proposed for all-in-wheel-motors-drive EVs. The RABS is realized as a pure electronic braking system called brake-by-wire. A coordination strategy is suggested to control RABS compromising three layers. First, wheels slip control takes place, and braking torque is calculated in the higher layer. In the coordinate interlayer, torque is allocated between actuators ensuring maximal energy recovery and vehicle stability. While in the lower layer, actuator control is performed. The RABS effectiveness is validated on a 3-DOF EVSimulink model through two straight-line braking manoeuvres with low and high initial speeds of 50 km/h and 150 km/h, respectively. Both regular and emergency braking manoeuvres are considered with ABS enabled and disabled for comparison. Simulation results showed the high performance of the proposed RABS control in terms of vehicle stability, brake response, stopping distance, and battery re-charging.
文摘The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.
文摘When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (KFJJ09-13)
文摘An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to capture the shock wave.The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections:the ZND model-like strcuture,single-sided triple point structure and dual-headed triple point strucuture.The first structure is the smooth straight,and the second has the characteristic of the triple points propagating dowanstream only with the same velocity,while the dual-headed triple point structure is very complicated.The detonation waves facing upstream and downstream propagate with different velocities,in which the periodic collisions of the triple points cause the oscillation of the detonation wave front.This oscillation process has temporal and spatial periodicity.In addition,the triple point trace are recorded to obtain different cell structures in three sections.
基金National Natural Science Foundation of China under Grants (51278327)the Tianjin Research Program of Application Foundation and Advanced Technology (14JCYBJC21900)
文摘The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and effi- ciently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.
文摘Cross-wedge rolling (CWR) is a metal process of ro ta ry forming. To produce a part, one cylindrical billet should be placed between t wo counterrotating and wedge-shape dies, which move tangentially relative each other. The billet suffers plastic deformation (essentially, localized compressio n) during its rotation between the rotating dies. Compared to other numerical si mulation methods, the finite element method (FEM) has advantages in solving gene ral problems with complex shapes of the formed parts. In cross-wedge rolling, t here are four stages in the workpiece deformation process, namely knifing, guidi ng, stretching and sizing stage. It is time-consuming and expensive to design t he CWR process by trial and error method. The application of numerical simul ation for the CWR process will help engineers to efficiently improve the process development. Tselikov, Hayama, Jain and Kobayashi, and Higashimo applied the sl ip-line theory in study of CWR process analysis. Zb.pater studied CWR process i ncluding upsetting by upper-bound method. The above numerical simulation were b ased on the two-dimensional plain-strain assumption ignored the metal flow in workpiece axial direction. Therefore, the complex three-dimensional stress and deformation involved in CWR processes were not presented. Compared to other nume rical simulation methods, the finite element method (FEM) has advantages in solv ing general problems with complex shapes of the formed parts. As yet, a few 3-D finite element simulation studies on CWR process have been reported in literatu res. In this paper, the process of cross wedge rolling (CWR) has been simulated and analyzed by 3D rigid-plastic finite element method. Considering the charact eristic of CWR, the static implicit FEM program is selected. The models proposed in this study uses the commercial code DEFORM 3D to simulate the CWR process. T his is an implicit Lagrangian finite element code, which includes many new enhan cements functions. A new method of utilizing multiple processors using the MPI s tandard has been implemented. Automatic switching between the two different defo rmation solvers (Sparse Solver and Conjugate Gradient Solver) has also been impl emented in order to increase the speed of simulations. In this paper, all stages in CWR process are simulated to be able to closely understand and analyze the a ctual CWR process. For simulating all forming stages in CWR process, the dynam ic adaptive remeshing technology for tetrahedral solid elements was applied. T he stress distributions in cross section of forming workpiece are analyzed to in terpret fracture or rarefaction in the center of workpiece. Authors also analyze d the time-torque curve and the laws of load changing.
基金supported by the National Natural Science Foundation of China (No.50975023)the National Science and Technology Major Project (No.2009ZX04014-074)Beijing Natural Science Foundation (No.3082013)
文摘The metal microstructure during the hot forming process has a significant effect on the mechanical properties of final products. To study the microstructural evolution of the cross wedge rolling (CWR) process, the microstructural model of GH4169 alloy was programmed into the user subroutine of DEFORM-3D by FORTRAN. Then, a coupled thermo-mechanical and microstructural simulation was performed under different conditions of CWR, such as area reduction, rolling temperature, and roll speed. Comparing experimental data with simulation results, the difference in average grain size is from 11.2% to 33.4% so it is verified that the mierostructural model of GH4169 alloy is reliable and accurate. The fine grain of about 12-15 p.m could be obtained by the CWR process, and the grain distribution is very homogeneous. For the symmetry plane, increasing the area reduction is helpful to refine the grain and the value should be around 61%. Moreover, when the roiling temperature changes from 1000 to 1100℃ and the roll speed from 6 to 10 r.min-1, the grain size of the rolled piece decreases first and then increases. The temperature may be better to choose the value around 1050℃ and the speed less than 10 r-min-1.
文摘The hollow parts formed with cross-wedge rolling (CWR) have a wide application in many fields, such as architecture and automobile, etc. But the finished configuration of part’s cross section was always ellipse and it was hard to make it satisfied with traditional forming process. This paper proposed a FEM model of hollow workpiece of CWR in the sizing process, and simulated the deformation condition using the ANSYS program. Three kinds of parts with different wall thickness were calculated. Some stress and strain fields of the deformed hollow parts at various conditions are gained. The influence of wall thickness on the distribution of stress and strain was analyzed. The paper also found two phenomena, which never have been seen at traditional experiment, and author tried to give some explanations. The ANSYS program provided the relationship between the tolerance of the deformed workpiece and the deforming parameter. It is helpful to design the sizing dies of a new precise forming process of hollow parts on the CWR. The new process that designed through the information of FEM improved the accuracy of hollow parts on CWR. It proved the validity and practicability of numerical simulation.
基金Projects(51375042,51505026)supported by the National Natural Science Foundation of ChinaProject(201312G02)supported by Yangfan Innovative&Entepreneurial Research Team,ChinaProject(2015M580977)supported by China Postdoctoral Science Foundation
文摘A rigid-plastic finite element method(FEM) simulation model for a multi-wedge cross wedge rolling(MCWR) was developed to analyze an asymmetric stepped shaft. To evaluate the MCWR process and better understand its deformation characteristics, the material flowing mechanisms, temperature distributions, strain and rolling force were analyzed. The correctness of the finite element simulation is experimentally verified. Numerical simulations and experiments led to the following conclusions: when α=36° and β=7.5°, the quality of the work piece can be significantly improved. Finally, the development of the asymmetric stepped shaft is applied to industrial production.
文摘A 65-year old woman was admitted to our hospital with abdominal pain. Computed tomography showed a tumor measuring about 3 cm in diameter with no metastatic lesion or signs of local infiltration. Gastroduodenal endoscopy revealed the presence of a submucosal tumor in the third portion of the duodenum and biopsy revealed tumor cells stained positive for c-kit. These findings were consistent with gastrointestinal stromal tumors(GISTs) and we performed a wedge resection of the duodenum, sparing the pancreas. The postoperative course was uneventful and she was discharged on day 6. Surgical margins were negative. Histology revealed a GIST with a diameter of 3.2 cm and 【 5 mitoses/50 high power fields, indicating a low risk of malignancy. Therefore, adjuvant therapy with imatinib was not initiated. Wedge resection with primary closure is a surgical procedure that can be used to treat low malignant potential neoplasms of the duodenum and avoid extensive surgery, with significant morbidity and possible mortality, such as pancreatoduodenectomy.
基金supported by the IMSRN French Company through a CIFRE grant No. 2012/0710CSIRO Energy Flagship+1 种基金QCAT in AustraliaThe laboratory 3SR is part of the Lab Ex Tec 21 (Investissements d’Avenir e grant agreement No. ANR-11-LABX-0030)
文摘Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring at the surface of the pit walls may be identified through three-dimensional(3D) image analysis combined with the discrete fracture network(DFN) approach. Kinematic analysis based on polyhedral modelling can be used for first pass analysis but cannot capture composite failure mechanisms involving both structurally controlled and rock mass progressive failures. A methodology is proposed in this paper to overcome such limitations by coupling DFN models with geomechanical simulations based on the discrete element method(DEM). Further, high resolution photogrammetric data are used to identify valid model scenarios. An identified wedge failure that occurred in an Australian coal mine is used to validate the methodology. In this particular case, the failure surface was induced as a result of the rock mass progressive failure that developed from the toe of the structure inside the intact rock matrix. Analysis has been undertaken to determine in what scenarios the measured and predicted failure surfaces can be used to calibrate strength parameters in the model.
基金the National Basic Research Program of China(Grant No.2011CB013004)the National Natural Science Foundation of China(Grant No.50975128)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2011462)the Postdoctoral Science Foundation of China(Grant No.20100481093)
文摘We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical wavelength resolution. We analyze the near-field intensity distribution of the tip of the metallic wedge by the FDTD method, and study the total intensity as well as the total potential of optical potentials and van der Waals potentials for 87 Rb atoms in the light field of one pair and two pairs of tips of metallic wedges. It shows that the total potentials of one pair and two pairs of tips of metallic wedges can generate a gravito-optical trap and a dark closed trap for nanoscale guiding of neutral cold atoms. Guided atoms can be cooled with efficient intensity-gradient Sisyphus cooling by blue-detuned light field. This provides an important step towards the generation of hybrid systems consisting of isolated atoms and solid devices.
基金One of the authors (Swati Mukhopadhyay) thanks the UGC, New Delhi, India for the financial support under the Special Assistance Programme DSA Phase-1
文摘The aim of this paper is to investigate numerically the boundary layer forced convection flow of a Casson fluid past a symmetric porous wedge. Similarity transformations are used to convert the governing partial differential equations into ordinary ones. With the help of the shooting method, the reduced equations are then solved numerically. Comparisons are made with the previously published results in some special cases and they are found to be in excellent agreement with each other. The results obtained in this study are illustrated graphically and discussed in detail. The velocity is found to increase with an increasing Falkner-Skan exponent whereas the temperature decreases. With the rise of the Casson fluid parameter, the fluid velocity increases but the temperature is found to decrease in this case. Fluid velocity is suppressed with the increase of suction. The skin friction decreases with the increasing value of Casson fluid parameter. It is found that the temperature decreases as the Prandtl number increases and thermal boundary layer thickness decreases with the increasing value of Prandtl number. A significant finding of this investigation is that flow separation can be controlled by increasing the value of the Casson fluid parameter as well as by increasing the amount of suction.