In this paper, the measurement of liquid mixing in a downcomer of segmental type of distillation column is presented. The extent of liquid mixing is calculated by means of a mixing pool model. The results indicate tha...In this paper, the measurement of liquid mixing in a downcomer of segmental type of distillation column is presented. The extent of liquid mixing is calculated by means of a mixing pool model. The results indicate that liquid mixing in a downcomer is actually incomplete. It is a significant correction to the assumption of complete downcomer mixing or no downcomer mixing which is generally adopted in many distillation calculations. Besides, the present results are used in a two dimensional eddy diffusion model to calculate the distillation tray efficiency. It is shown that the assumption of complete downcomer mixing is closer to the actual situation than that of no downcomer mixing.展开更多
1 INTRODUCTIONDowncomers,employed in tray columns,are widely used nowadays in industrialseparation processes.They function as channels for the liquid phase to fall fluentlyfrom one tray onto its neighbouring places fo...1 INTRODUCTIONDowncomers,employed in tray columns,are widely used nowadays in industrialseparation processes.They function as channels for the liquid phase to fall fluentlyfrom one tray onto its neighbouring places for the held-up bubble to separate fromthe liquid phase.It is well known that liquid flow patterns and mixing characteristicsin downcomers are closely related to the initial liquid distribution on the tray,andhence to tray efficiency.For a long period of time,little attention has been paid展开更多
The distribution of vertical stress for both active and passive state in the silo with a central innerdowncomer is reported in this paper. Experimental measurement of the axial distribution of vertical stress for both...The distribution of vertical stress for both active and passive state in the silo with a central innerdowncomer is reported in this paper. Experimental measurement of the axial distribution of vertical stress for bothactive and passive state in the silo are in good agreement with that predicted by theoretical analysis. The meanaxial stress is reduced due to the presence of the inner downcomer in the silo.展开更多
A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A com...A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A computational fluid dynamics model is proposed in this study to simulate the counter-current two-phase flow in the downcomer of the LSCFB. The model is based on the Eulerian-Eulerian approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superfcial liquid velocity in downcomer and solids circulation rate. The model also predicts the residence time of solid particles in the downcomer using a pulse technique. It is demonstrated that the increase in the superficial liquid velocity decreases the solids dispersion in the downcomer of the LSCFB,展开更多
Standpipes,or downcomers,are commonly used in fluidized beds to transport particles.The outlet structure of the downcomer greatly affects the performance of flow from it and even overall reactor performance.In this st...Standpipes,or downcomers,are commonly used in fluidized beds to transport particles.The outlet structure of the downcomer greatly affects the performance of flow from it and even overall reactor performance.In this study,the hydrodynamics in commercial-scale internally circulating fluidized beds(ICFBs)with central downcomers having different outlet structures was investigated using computational fluid dynamics simulations with an energy minimization multi-scale drag model.The predicted results closely agreed with experimental data.Results showed that in an ICFB with a downcomer outlet directly open to the bed(model A),nearly 12.7%to 5.4%of the gas in the draft tube bypasses into the downcomer.In the ICFB models B and C with a conic baffle below the downcomer,the gas bypass is significantly weakened or even eliminated when the diameter of the conic baffle is 1.1 times that of the downcomer(model C).In addition,the solids circulation mass flux in ICFBs increased by about 62.5%,from 126.8 kg/(m2 s)in model A to 206 kg/(m2 s)in model C.展开更多
The liquid hold-up in a reactive distillation(RD)column not only has a significant impact on the extent of reactions,but also affects the pressure drop and hydraulic conditions in the column.Therefore,the liquid hold-...The liquid hold-up in a reactive distillation(RD)column not only has a significant impact on the extent of reactions,but also affects the pressure drop and hydraulic conditions in the column.Therefore,the liquid hold-up would be a critical design factor for RD columns.However,the existing design methods for RD columns typically neglect the influence of considerable amount of liquid hold-up in downcomers owing to the difficulties of solving a large-scale nonlinear model system by considering downcomer hydraulics,resulting in significant deviations from actual situation and even operation infeasibility of the designed column.In this paper,a pseudo-transient(PT)RD model based on equilibrium model considering tray hydraulics was established for rigorous simulation and optimization of RD plate columns considering the liquid hold-up both in downcomers and column trays,and a steady-state optimization algorithm assisted by the PT model was adopted to robustly solve the optimization problem.The optimization results of either ethylene glycol RD or methyl acetate RD demonstrated that assuming all the liquid hold-up of a stage belonged to the tray will cause significant deviations in the column diameter,weir height,and the number of stages,which leads to not meeting the separation requirements and even operation hydraulic infeasibility.The rigorous model proposed in this study which considers the liquid hold-up both on trays and in downcomers as well as hydraulic constraints can be applied to systematically design industrial RD plate columns to simultaneously obtain optimal operating variables and equipment structure variables.展开更多
文摘In this paper, the measurement of liquid mixing in a downcomer of segmental type of distillation column is presented. The extent of liquid mixing is calculated by means of a mixing pool model. The results indicate that liquid mixing in a downcomer is actually incomplete. It is a significant correction to the assumption of complete downcomer mixing or no downcomer mixing which is generally adopted in many distillation calculations. Besides, the present results are used in a two dimensional eddy diffusion model to calculate the distillation tray efficiency. It is shown that the assumption of complete downcomer mixing is closer to the actual situation than that of no downcomer mixing.
文摘1 INTRODUCTIONDowncomers,employed in tray columns,are widely used nowadays in industrialseparation processes.They function as channels for the liquid phase to fall fluentlyfrom one tray onto its neighbouring places for the held-up bubble to separate fromthe liquid phase.It is well known that liquid flow patterns and mixing characteristicsin downcomers are closely related to the initial liquid distribution on the tray,andhence to tray efficiency.For a long period of time,little attention has been paid
文摘The distribution of vertical stress for both active and passive state in the silo with a central innerdowncomer is reported in this paper. Experimental measurement of the axial distribution of vertical stress for bothactive and passive state in the silo are in good agreement with that predicted by theoretical analysis. The meanaxial stress is reduced due to the presence of the inner downcomer in the silo.
基金supported by the Discovery Grant and Engage Grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A computational fluid dynamics model is proposed in this study to simulate the counter-current two-phase flow in the downcomer of the LSCFB. The model is based on the Eulerian-Eulerian approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superfcial liquid velocity in downcomer and solids circulation rate. The model also predicts the residence time of solid particles in the downcomer using a pulse technique. It is demonstrated that the increase in the superficial liquid velocity decreases the solids dispersion in the downcomer of the LSCFB,
文摘Standpipes,or downcomers,are commonly used in fluidized beds to transport particles.The outlet structure of the downcomer greatly affects the performance of flow from it and even overall reactor performance.In this study,the hydrodynamics in commercial-scale internally circulating fluidized beds(ICFBs)with central downcomers having different outlet structures was investigated using computational fluid dynamics simulations with an energy minimization multi-scale drag model.The predicted results closely agreed with experimental data.Results showed that in an ICFB with a downcomer outlet directly open to the bed(model A),nearly 12.7%to 5.4%of the gas in the draft tube bypasses into the downcomer.In the ICFB models B and C with a conic baffle below the downcomer,the gas bypass is significantly weakened or even eliminated when the diameter of the conic baffle is 1.1 times that of the downcomer(model C).In addition,the solids circulation mass flux in ICFBs increased by about 62.5%,from 126.8 kg/(m2 s)in model A to 206 kg/(m2 s)in model C.
基金supported by the National Natural Science Foundation of China(22378304).
文摘The liquid hold-up in a reactive distillation(RD)column not only has a significant impact on the extent of reactions,but also affects the pressure drop and hydraulic conditions in the column.Therefore,the liquid hold-up would be a critical design factor for RD columns.However,the existing design methods for RD columns typically neglect the influence of considerable amount of liquid hold-up in downcomers owing to the difficulties of solving a large-scale nonlinear model system by considering downcomer hydraulics,resulting in significant deviations from actual situation and even operation infeasibility of the designed column.In this paper,a pseudo-transient(PT)RD model based on equilibrium model considering tray hydraulics was established for rigorous simulation and optimization of RD plate columns considering the liquid hold-up both in downcomers and column trays,and a steady-state optimization algorithm assisted by the PT model was adopted to robustly solve the optimization problem.The optimization results of either ethylene glycol RD or methyl acetate RD demonstrated that assuming all the liquid hold-up of a stage belonged to the tray will cause significant deviations in the column diameter,weir height,and the number of stages,which leads to not meeting the separation requirements and even operation hydraulic infeasibility.The rigorous model proposed in this study which considers the liquid hold-up both on trays and in downcomers as well as hydraulic constraints can be applied to systematically design industrial RD plate columns to simultaneously obtain optimal operating variables and equipment structure variables.