Sulphonated nano-structured micro-porous ion exchange polymers, known as sulphonated PolyHIPE Polymers (s-PHPs) were used in syngas cleaning to investigate their impact on tar composition, concentration and dew poin...Sulphonated nano-structured micro-porous ion exchange polymers, known as sulphonated PolyHIPE Polymers (s-PHPs) were used in syngas cleaning to investigate their impact on tar composition, concentration and dew point depression during the gasification of fuel cane bagasse as a model biomass. The results showed that the s-PHPs used as a secondary syngas treatment system, was highly effective at adsorbing and reducing the concentration of all class of tars in syngas by 95%-80% which resulted in tar dew point depression from 90 ~C to 73 ~C. It was shown that tars underwent chemical reactions within s-PHPs, indicating that tar diffusion from syngas was driven by chemical potential. It was also observed that s-PHPs also captured ash forming elements from syngas. The use of s-PHPs in gasification as well as in an integrated thermochemical biorefinery technology is discussed since the tar loaded s-PHPs can be used as natural herbicides in the form of soil additives to enhance the biomass growth and crop yield.展开更多
This paper focuses on a two-dimensional CFD simulation of a downdraft gasifier and a pilot-scale experiment for verification using wood pellet fuel.The simulation work was carried out via the ANSYS-Fluent CFD software...This paper focuses on a two-dimensional CFD simulation of a downdraft gasifier and a pilot-scale experiment for verification using wood pellet fuel.The simulation work was carried out via the ANSYS-Fluent CFD software package with in-house coding via User Defined Function.Three gasification parameters were taken into account in the simulation and validation to achieve highly accurate results;namely,fuel consumption,temperature profile,and syngas composition.After verification of the developed model,the effects of aspect ratios on temperature and syngas composition were investigated.Results from simulation and experimental work indicated that the fuel consumption rate during the steady state gasification experiment was 1.750±0.048 g/s.The average steady state temperature of the experiment was 1240.32±14.20 K.In sum,the fuel consumption and temperature profile during gasification from modeling and experimentation show an error lower than 1.3%.Concentrations of CO,CO2,H2,and CH4 were 20.42 vol%,15.09 vol%,8.02 vol%,and 2.6 vol%,respectively,which are comparable to those of the experiment:20.00 vol%,15.48 vol%,8.00 vol%,and 2.65 vol%.A high concentration of syngas is observed in the outer radial part of the reactor because of the resistive flow of the air inlet and the synthesis gas produced.The average temperatures during the steady state of the gasifier with aspect ratios(H/D)of 1.00,1.38(experiment),and 1.82 were 978.77±11.60,1256.46±9.90,and 1368.94±9.20 K,respectively.The 1.82 aspect ratio reactor has the smallest diameter,therefore the radiative heat transferred from the reactor wall affects the temperature in the reactor.Syngas compositions are comparable.Inverse relationships between the aspect ratios and the syngas LHV,(4.29–4.49 MJ/N m3),cold gas efficiency(29.66%to 31.00%),and carbon conversion(79.59%to 80.87%)are observed.展开更多
By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolys...By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyrolysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.展开更多
The mulberry paper handmade dryer uses downdraft gasifier, which is a continuous hot air dryer. The downdraft gasifier uses charcoal or wood chip as fuel to produce the producer gas for a dryer heat source. Two steps ...The mulberry paper handmade dryer uses downdraft gasifier, which is a continuous hot air dryer. The downdraft gasifier uses charcoal or wood chip as fuel to produce the producer gas for a dryer heat source. Two steps operation of a dryer as follows: The frst was to reduce mulberry paper pulp moisture by an air vacuum pump; the second was a continuous hot air drying process. The optimum condition drying, the capacity of dryer, the fuel consumption, the drying constant (k) and economics analysis were investigated. It was found that the first step could be to reduce mulberry paper pulp moisture content about 25% and the suitable condition drying was 80 ~C drying temperature, 0.04 kg/s air mass flow rate and 0.29 m/min chain conveyor speed, respectively. The capacity of this dryer was 20 sheets per hour. The quality of mulberry paper product was very good (based on the standard of mulberry paper community 41/2546) and the fuel consumption rate was 5 kg/h (charcoal). The drying constant was about 0.532933-0.541367 min~ and the drying constant was a function of drying temperature (T), air mass flow rate (F) and conveyor speed (10 as equation of k(T, F, V) = 0.567494 + 0.000422T- 1.40588F- 0.000205 V (R2 = 0.9254) and the breakeven point of dryer was 0.79 years.展开更多
The study deals with a multi-faceted theoretical approach, symbolic, analytical and numerical, based on the chemical equilibrium assumption, addressed at predicting the performance trends of downdrafi wood-gasificatio...The study deals with a multi-faceted theoretical approach, symbolic, analytical and numerical, based on the chemical equilibrium assumption, addressed at predicting the performance trends of downdrafi wood-gasification processes so to assess the optimal ranges of input parameters, in particular the equivalence ratios, suitable to achieving the highest cold gas efficiencies whilst keeping the more the possible tar-free the produced bio-syngas. The time-steady, zero-dimensional model has been developed within MATLAB (the computing language and interactive environment from Matrix Laboratory) and solved by enforcing the constraints posed by the equilibrium constants in relation to two reactions, gas-water shift and methanation. Particular care is devoted toward verifying the real attainment of the equilibrium condition, as attested by an actual presence of products from the equilibrium reactions together with a zero difference AE between the energy flows entering and exiting the system, an issue often overlooked. With respect to other similar theoretical approaches, the numerical model, assisted by the symbolic counterpart for better interpretation and intrinsic validation of results, shows a distinct advantage in predicting rather accurately the syngas composition for varying gasification temperatures, as attested by cross comparisons with experimental data directly taken on an instrumented, dedicated, small-scale downdraft gasifier operational at DIME/SCL (the Savona Combustion Laboratory of DIME, the Dept. of Mechanical, Energy, Management and Transportation Engineering of Genova University). The behavior of cold gas efficiency clearly points out that, from an energy conversion point of view, the optimal gasification temperatures turn out comprised between 900 ℃ and 1,000 ℃: this range is indeed characterized by the highest concentrations in the energy-rich syngas components CO and H2. For higher temperatures, as induced by higher air-to-fuel ratios, the progressive oxidation of above components, together with increasing nitrogen levels, would decrease the bio-syngas heat values.展开更多
Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(f...Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(four stroke,single cylinder,5.25 kW) with respect to its thermal efficiency,specific fuel consumption and diesel substitution by use of diesel alone and producer gas-cum-diesel(dual fuel mode).Three types of biomass,i.e.wood chips,pigeon pea stalks and corn cobs were used for generation of producer gas.A producer gas system consisting of a downdraft gasifier,a cooling cum cleaning unit,a filtering unit and a gas air mixing device was designed,fabricated and used to power a 5.25 kW diesel engine on dual fuel mode.Performance of the engine was reported by keeping biomass moisture contents as 8%,12%,16%,and 21%,engine speed as 1 600 r/min and with variable engine loads.The average value of thermal efficiency on dual fuel mode was found slightly lower than that of diesel mode.The specific diesel consumption was found to be 60%-64% less in dual fuel mode than that in diesel mode for the same amount of energy output.The average diesel substitution of 74% was observed with wood chips followed by corn cobs(78%) and pigeon pea stalks(82%).Based on the performance studied,the producer gas may be used as a substitute or as supplementary fuel for diesel conservation,particularly for stationary engines in agricultural operations in the farm.展开更多
A nozzle inclination angle and swirl combustor inside the low-tar biomass(LTB)gasifier reactor were tested and optimized to evaluate these effects on tar reduction to design tar-free producer gas.The tar reduction pro...A nozzle inclination angle and swirl combustor inside the low-tar biomass(LTB)gasifier reactor were tested and optimized to evaluate these effects on tar reduction to design tar-free producer gas.The tar reduction process is mainly based on the concept of a swirling flow created by the nozzle inclination angle,with the inclination angle of 55◦to the radial line,allowing good mixing between pyrolysis gases and gasifying agents.A separate swirl combustor has created large internal annular and reverses flow zones with the help of swirl flow,resulting in homogenized temperature inside the combustor and providing longer residence time;both have a positive effect on the combustion of mixed gasifying air-pyrolysis gases by the thermal cracking in the partial oxidation zone.Recircling ratio(RR)and combustion degree of volatiles are the two optimization parameters for evaluating the performance of NIA and swirl combustor.The result observed that outstanding tar reduction occurred in this novel system.About 86.5 and 12.8%of tar compounds are broken down in the partial oxidation zone and pyrolysis zone using the novel swirl combustor and NIA,respectively;gas outlet has observed producer gas having tar concentration of less than 1%.The optimization results reveal that a lower recycling ratio(recycle gas/gasifying air)and a higher combustion degree of volatiles perform better in biomass gasification.Finally,this system generated producer gas with the tar concentration at an extremely low level of 7.4 mg/Nm^(3)for a biomass moisture content of 9%and appeared the lower heating value of 4.6–5.1 MJ/Nm^(3).This lower tar concentration might be directly coupled with an internal combustion engine or a gas turbine for power generation.展开更多
基金supported by the EU FP7 Integrated Project(COPIRIDE)Andrea Jordan was supported for her PhD studies by a National Development Scholarship from the Government of Barbados+1 种基金a research grant from the Barbados Light and Power Company Limited which also supplied fuel cane bagasse for the experimentsAbdulaziz Mohamed was supported for his PhD studies by the Libyan Ministry of Higher Education and Scientific Research
文摘Sulphonated nano-structured micro-porous ion exchange polymers, known as sulphonated PolyHIPE Polymers (s-PHPs) were used in syngas cleaning to investigate their impact on tar composition, concentration and dew point depression during the gasification of fuel cane bagasse as a model biomass. The results showed that the s-PHPs used as a secondary syngas treatment system, was highly effective at adsorbing and reducing the concentration of all class of tars in syngas by 95%-80% which resulted in tar dew point depression from 90 ~C to 73 ~C. It was shown that tars underwent chemical reactions within s-PHPs, indicating that tar diffusion from syngas was driven by chemical potential. It was also observed that s-PHPs also captured ash forming elements from syngas. The use of s-PHPs in gasification as well as in an integrated thermochemical biorefinery technology is discussed since the tar loaded s-PHPs can be used as natural herbicides in the form of soil additives to enhance the biomass growth and crop yield.
文摘This paper focuses on a two-dimensional CFD simulation of a downdraft gasifier and a pilot-scale experiment for verification using wood pellet fuel.The simulation work was carried out via the ANSYS-Fluent CFD software package with in-house coding via User Defined Function.Three gasification parameters were taken into account in the simulation and validation to achieve highly accurate results;namely,fuel consumption,temperature profile,and syngas composition.After verification of the developed model,the effects of aspect ratios on temperature and syngas composition were investigated.Results from simulation and experimental work indicated that the fuel consumption rate during the steady state gasification experiment was 1.750±0.048 g/s.The average steady state temperature of the experiment was 1240.32±14.20 K.In sum,the fuel consumption and temperature profile during gasification from modeling and experimentation show an error lower than 1.3%.Concentrations of CO,CO2,H2,and CH4 were 20.42 vol%,15.09 vol%,8.02 vol%,and 2.6 vol%,respectively,which are comparable to those of the experiment:20.00 vol%,15.48 vol%,8.00 vol%,and 2.65 vol%.A high concentration of syngas is observed in the outer radial part of the reactor because of the resistive flow of the air inlet and the synthesis gas produced.The average temperatures during the steady state of the gasifier with aspect ratios(H/D)of 1.00,1.38(experiment),and 1.82 were 978.77±11.60,1256.46±9.90,and 1368.94±9.20 K,respectively.The 1.82 aspect ratio reactor has the smallest diameter,therefore the radiative heat transferred from the reactor wall affects the temperature in the reactor.Syngas compositions are comparable.Inverse relationships between the aspect ratios and the syngas LHV,(4.29–4.49 MJ/N m3),cold gas efficiency(29.66%to 31.00%),and carbon conversion(79.59%to 80.87%)are observed.
文摘By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyrolysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.
文摘The mulberry paper handmade dryer uses downdraft gasifier, which is a continuous hot air dryer. The downdraft gasifier uses charcoal or wood chip as fuel to produce the producer gas for a dryer heat source. Two steps operation of a dryer as follows: The frst was to reduce mulberry paper pulp moisture by an air vacuum pump; the second was a continuous hot air drying process. The optimum condition drying, the capacity of dryer, the fuel consumption, the drying constant (k) and economics analysis were investigated. It was found that the first step could be to reduce mulberry paper pulp moisture content about 25% and the suitable condition drying was 80 ~C drying temperature, 0.04 kg/s air mass flow rate and 0.29 m/min chain conveyor speed, respectively. The capacity of this dryer was 20 sheets per hour. The quality of mulberry paper product was very good (based on the standard of mulberry paper community 41/2546) and the fuel consumption rate was 5 kg/h (charcoal). The drying constant was about 0.532933-0.541367 min~ and the drying constant was a function of drying temperature (T), air mass flow rate (F) and conveyor speed (10 as equation of k(T, F, V) = 0.567494 + 0.000422T- 1.40588F- 0.000205 V (R2 = 0.9254) and the breakeven point of dryer was 0.79 years.
文摘The study deals with a multi-faceted theoretical approach, symbolic, analytical and numerical, based on the chemical equilibrium assumption, addressed at predicting the performance trends of downdrafi wood-gasification processes so to assess the optimal ranges of input parameters, in particular the equivalence ratios, suitable to achieving the highest cold gas efficiencies whilst keeping the more the possible tar-free the produced bio-syngas. The time-steady, zero-dimensional model has been developed within MATLAB (the computing language and interactive environment from Matrix Laboratory) and solved by enforcing the constraints posed by the equilibrium constants in relation to two reactions, gas-water shift and methanation. Particular care is devoted toward verifying the real attainment of the equilibrium condition, as attested by an actual presence of products from the equilibrium reactions together with a zero difference AE between the energy flows entering and exiting the system, an issue often overlooked. With respect to other similar theoretical approaches, the numerical model, assisted by the symbolic counterpart for better interpretation and intrinsic validation of results, shows a distinct advantage in predicting rather accurately the syngas composition for varying gasification temperatures, as attested by cross comparisons with experimental data directly taken on an instrumented, dedicated, small-scale downdraft gasifier operational at DIME/SCL (the Savona Combustion Laboratory of DIME, the Dept. of Mechanical, Energy, Management and Transportation Engineering of Genova University). The behavior of cold gas efficiency clearly points out that, from an energy conversion point of view, the optimal gasification temperatures turn out comprised between 900 ℃ and 1,000 ℃: this range is indeed characterized by the highest concentrations in the energy-rich syngas components CO and H2. For higher temperatures, as induced by higher air-to-fuel ratios, the progressive oxidation of above components, together with increasing nitrogen levels, would decrease the bio-syngas heat values.
文摘Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(four stroke,single cylinder,5.25 kW) with respect to its thermal efficiency,specific fuel consumption and diesel substitution by use of diesel alone and producer gas-cum-diesel(dual fuel mode).Three types of biomass,i.e.wood chips,pigeon pea stalks and corn cobs were used for generation of producer gas.A producer gas system consisting of a downdraft gasifier,a cooling cum cleaning unit,a filtering unit and a gas air mixing device was designed,fabricated and used to power a 5.25 kW diesel engine on dual fuel mode.Performance of the engine was reported by keeping biomass moisture contents as 8%,12%,16%,and 21%,engine speed as 1 600 r/min and with variable engine loads.The average value of thermal efficiency on dual fuel mode was found slightly lower than that of diesel mode.The specific diesel consumption was found to be 60%-64% less in dual fuel mode than that in diesel mode for the same amount of energy output.The average diesel substitution of 74% was observed with wood chips followed by corn cobs(78%) and pigeon pea stalks(82%).Based on the performance studied,the producer gas may be used as a substitute or as supplementary fuel for diesel conservation,particularly for stationary engines in agricultural operations in the farm.
基金Biomass Gasification Group(BGG),DTU Chemical Engineering,Technical University of Denmark to conduct this research are acknowledged thankfully.The author thanks Zsuzsa Sarossy and Kristian Estrup from DTU Chemical Engineering for performing tar samples analysis and experimental setup during all the tests,respectively.
文摘A nozzle inclination angle and swirl combustor inside the low-tar biomass(LTB)gasifier reactor were tested and optimized to evaluate these effects on tar reduction to design tar-free producer gas.The tar reduction process is mainly based on the concept of a swirling flow created by the nozzle inclination angle,with the inclination angle of 55◦to the radial line,allowing good mixing between pyrolysis gases and gasifying agents.A separate swirl combustor has created large internal annular and reverses flow zones with the help of swirl flow,resulting in homogenized temperature inside the combustor and providing longer residence time;both have a positive effect on the combustion of mixed gasifying air-pyrolysis gases by the thermal cracking in the partial oxidation zone.Recircling ratio(RR)and combustion degree of volatiles are the two optimization parameters for evaluating the performance of NIA and swirl combustor.The result observed that outstanding tar reduction occurred in this novel system.About 86.5 and 12.8%of tar compounds are broken down in the partial oxidation zone and pyrolysis zone using the novel swirl combustor and NIA,respectively;gas outlet has observed producer gas having tar concentration of less than 1%.The optimization results reveal that a lower recycling ratio(recycle gas/gasifying air)and a higher combustion degree of volatiles perform better in biomass gasification.Finally,this system generated producer gas with the tar concentration at an extremely low level of 7.4 mg/Nm^(3)for a biomass moisture content of 9%and appeared the lower heating value of 4.6–5.1 MJ/Nm^(3).This lower tar concentration might be directly coupled with an internal combustion engine or a gas turbine for power generation.