In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, em...In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, employing drag reduction measures becomes particularly crucial. This paper employs the immersed boundary method to investigate the impact of transversely oriented appendage plate flexibility on the drag of cylinders under different Reynolds numbers and distances. The results indicate that flexible appendage plate exerts drag reduction effects on the downstream cylinder, with this effect gradually diminishing as Reynolds numbers increase. At identical Reynolds numbers, the drag reduction effect initially increases and then decreases with distance, with the optimal drag reduction distance observed at D = 2.5. Compared to cylinders without appendage plate, the maximum drag reduction achieved is 30.551%. Addressing the drag reduction issue in cylinders holds significant importance for ensuring engineering structural integrity, enhancing engineering efficiency, and developing novel underwater towing systems.展开更多
Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study o...Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.展开更多
Waterside creatures or aquatic organisms use a fin or web to generate a thrust force. These fins or webs have a non-convex section, referred to as a non-convex shape. We investigate the drag force acting on ...Waterside creatures or aquatic organisms use a fin or web to generate a thrust force. These fins or webs have a non-convex section, referred to as a non-convex shape. We investigate the drag force acting on a non-convex plate during unsteady motion. We perform the experiment in a water tank during free fall. We fabricate the non-convex plate by cutting isosceles triangles from the side of a convex hexagonal plate. The base angle of the triangle is between 0° to 45°. The base angle is 0 indicates the convex hexagonal thin plate. We estimate the drag coefficient with the force balance acting on the model based on the image analysis technique. The results indicate that increasing the base angle by more than 30° increased the drag coefficient. The drag coefficient during unsteady motion changed with the growth of the vortex behind the model. The vortex has small vortices in the shear layer, which is related to the Kelvin-Helmholtz instabilities.展开更多
文摘In engineering applications (Like an ocean riser), fluid flow around bluff bodies generates substantial resistance, which can jeopardize structural integrity, lifespan, and escalate resource consumption. Therefore, employing drag reduction measures becomes particularly crucial. This paper employs the immersed boundary method to investigate the impact of transversely oriented appendage plate flexibility on the drag of cylinders under different Reynolds numbers and distances. The results indicate that flexible appendage plate exerts drag reduction effects on the downstream cylinder, with this effect gradually diminishing as Reynolds numbers increase. At identical Reynolds numbers, the drag reduction effect initially increases and then decreases with distance, with the optimal drag reduction distance observed at D = 2.5. Compared to cylinders without appendage plate, the maximum drag reduction achieved is 30.551%. Addressing the drag reduction issue in cylinders holds significant importance for ensuring engineering structural integrity, enhancing engineering efficiency, and developing novel underwater towing systems.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant nos. 50639030 and 50979070) and the 863 Program of China (Grant no. 2006AA09Z348).
文摘Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.
文摘Waterside creatures or aquatic organisms use a fin or web to generate a thrust force. These fins or webs have a non-convex section, referred to as a non-convex shape. We investigate the drag force acting on a non-convex plate during unsteady motion. We perform the experiment in a water tank during free fall. We fabricate the non-convex plate by cutting isosceles triangles from the side of a convex hexagonal plate. The base angle of the triangle is between 0° to 45°. The base angle is 0 indicates the convex hexagonal thin plate. We estimate the drag coefficient with the force balance acting on the model based on the image analysis technique. The results indicate that increasing the base angle by more than 30° increased the drag coefficient. The drag coefficient during unsteady motion changed with the growth of the vortex behind the model. The vortex has small vortices in the shear layer, which is related to the Kelvin-Helmholtz instabilities.