The drag on non-spherical particles is an important basic parameter for multi-phase flows such as in biomass combustion, chemical blending, and mineral processing. Though there is much experimental research on such pa...The drag on non-spherical particles is an important basic parameter for multi-phase flows such as in biomass combustion, chemical blending, and mineral processing. Though there is much experimental research on such particles, there are few results for cuboids. This paper presents data for cuboids with a square base in static glycerin-water solutions of various volume concentrations. Complex motions were observed and characterized. A dimensionless expression is given for terminal velocity ut as a function of Archimedes number Ar which is used to develop an accurate correlation for friction factor CD. The accuracy of the correlation is 7.9% compared to experimental data in the literature. For both square plates and square rods, the terminal velocity per unit mass, ut/mp, was used to characterize the influence of narticle geometry on velocity, which was shown to be linear.展开更多
基金supported by the Major Program of the National Natural Science Foundation of China with Grant No. 10632070
文摘The drag on non-spherical particles is an important basic parameter for multi-phase flows such as in biomass combustion, chemical blending, and mineral processing. Though there is much experimental research on such particles, there are few results for cuboids. This paper presents data for cuboids with a square base in static glycerin-water solutions of various volume concentrations. Complex motions were observed and characterized. A dimensionless expression is given for terminal velocity ut as a function of Archimedes number Ar which is used to develop an accurate correlation for friction factor CD. The accuracy of the correlation is 7.9% compared to experimental data in the literature. For both square plates and square rods, the terminal velocity per unit mass, ut/mp, was used to characterize the influence of narticle geometry on velocity, which was shown to be linear.