Objective Laparoscopic surgery has become a routine general surgery with many advantages,such as alleviating abdominal pain.However,postoperative pain caused by abdominal drainage tubes has attracted little attention ...Objective Laparoscopic surgery has become a routine general surgery with many advantages,such as alleviating abdominal pain.However,postoperative pain caused by abdominal drainage tubes has attracted little attention from medical staff.The aim of this study was to explore the influence of a new abdominal drainage tube fixation method for 3-port laparoscopic cholecystectomy(LC)on patients’postoperative quality of life.Methods Patients who underwent 3-port LC with abdominal drainage tubes in the Department of Hepatobiliary Surgery of Linyi People’s Hospital from March 1,2023 to October 31,2023 due to gallstones with chronic cholecystitis were selected for this study.The patients were randomly divided into an experimental group and a control group.In the experimental group,the new abdominal drainage tube fixation method was used,while in the control group,the traditional method was used.Afterward,the quality of life of patient in terms of pain,activity,recovery time,and mental health status was evaluated.The exudate around the patient’s drainage tube was collected for bacterial culture and analysis.Results A total of 139 patients were randomly divided into an experimental group(70 patients)and a control group(69 patients).The patients’baseline characteristics were not significantly different.The patients in the experimental group had better outcomes in quality of life,with higher pain scores(24.03±2.37 vs.15.48±2.29,p<0.001)and activity scores(20.57±1.78 vs.14.13±1.43,p<0.001),and a shorter postoperative recovery time(2.36±0.68 d vs.2.96±1.34 d,p<0.001).The same results were shown in linear regression analysis scores of the 2 groups.The positive rate of bacterial culture in the exudate around the patient’s drainage tube in the experimental group was significantly lower than that in the control group(12.9%vs.43.5%,p<0.001);and furthermore,the positive rate of conditional pathogenic bacteria was even lower(7.1%vs.33.3%,p<0.001)in the experimental group than in the control group.Conclusion This new abdominal drainage tube fixation method can effectively promote patient rehabilitation and improve the quality of life for patient following 3-port LC with abdominal drainage tubes.展开更多
With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply...With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.展开更多
Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution ...Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution is derived by using finite difference method and its correctness is assessed by comparing with existing analytical and numerical solutions.Based on the present solution,the effects of interface parameters,stress ratios(i.e.,final effective stress over initial effective stress,N_(σ))and the ratio c_(c)/c_(k)of compression index to permeability index on the consolidation behavior of soil are studied in detail.The results show that,the characteristics of one-dimensional nonlinear consolidation of soil are not only related to c_(c)/c_(k)and N_(σ),but also related to boundary conditions.In the engineering practice,the soil drainage rate of consolidation process can be designed by adjusting the values of interface parameters.展开更多
Drainage canals are engineering structures widely used for debris flow mitigation.When passing through a drainage canal,debris flow usually scours the gully bed at the back of the rib sill of the drainage canal,which ...Drainage canals are engineering structures widely used for debris flow mitigation.When passing through a drainage canal,debris flow usually scours the gully bed at the back of the rib sill of the drainage canal,which leads to failure of the rib sill.Therefore,the scour depth at the back of the rib sill is an important design problem and it is related to the economic benefits of engineering and service years.To explore the law of the depth of the scour pit after debris flow through drainage canal ribs,we first proposed a formula for the calculation of the maximum scour depth at the back of a rib sill based on energy conservation.We then conducted a series of simulation experiments to test the proposed formula.The experimental results show that the scour depth,trench slope and the distance between ribs all increase with a decrease in debris flow density.We then compared the results of experiments and formula calculations.Through the testing analysis,we found that the calculation results of the conductedformula correspond with the experimental results better.Finally,taking Qipan Gully as an example,we designed the ultimate depth of a drainage canal for debris flow using the calculation formula.展开更多
It is necessary to understand the features of air pressure in a drainage stack of a high-rise building for properly designing and operating a drainage system. This paper presents a mathematical model for predicting th...It is necessary to understand the features of air pressure in a drainage stack of a high-rise building for properly designing and operating a drainage system. This paper presents a mathematical model for predicting the stack performance. A step function is used to describe the effect of the air entrainment caused by the water discharged from branch pipes. An additional source term is introduced to reflect the gas-liquid interphase interaction (GLII) and stack base effect. The drainage stack is divided into upper and base parts. The air pressure in the upper part is predicted by a total variation diminishing (TVD) scheme, while in the base part, it is predicted by a characteristic line method (CLM). The predicted results are compared with the data measured in a real-scale high- rise test building. It is found that the additional source term in the present model is effective. It intensively influences the air pressure distribution in the stack. The air pressure is also sensitive to the velocity-adjusting parameter (VAP), the branch pipe air entrainment, and the conditions on the stack bottom.展开更多
This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of wat...This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.展开更多
This paper presents the one-dimensional(1D)viscoelastic consolidation system of saturated clayey soil under continuous drainage boundaries.The fractional-derivative Merchant(FDM)model has been introduced into the cons...This paper presents the one-dimensional(1D)viscoelastic consolidation system of saturated clayey soil under continuous drainage boundaries.The fractional-derivative Merchant(FDM)model has been introduced into the consolidation system to simulate the viscoelasticity.Swartzendruber’s flow law is also introduced to describe the non-Darcian flow characteristics simultaneously.The generalized numerical solution of the 1D consolidation under continuous boundaries is given by the finite difference scheme.Furthermore,to illustrate the effectiveness of the numerical method,two simplified cases are compared against the current analytical and numerical results.Finally,the effects of boundary parameters and model parameters on the viscoelastic consolidation were illustrated and discussed.The results indicated that the boundary parameters have a significant influence on consolidation.The larger the values of boundary parameters,the faster the whole dissipation of the excess pore-water pressure and soils’settlement rate.Fractional-order and viscosity parameter have little effect on consolidation,which are primarily significant in the middle and late consolidation phases.With the increase of the modulus ratio,the whole consolidation process becomes faster.Moreover,considering Swartzendruber’s flow delays the consolidation rate of the soil layer.展开更多
基金supported by grants from the Shandong Provincial Natural Science Foundation(No.ZR2021MH033)the Linyi People’s Hospital,and the Key R&D Plan of Linyi City(No.2023xy0029).
文摘Objective Laparoscopic surgery has become a routine general surgery with many advantages,such as alleviating abdominal pain.However,postoperative pain caused by abdominal drainage tubes has attracted little attention from medical staff.The aim of this study was to explore the influence of a new abdominal drainage tube fixation method for 3-port laparoscopic cholecystectomy(LC)on patients’postoperative quality of life.Methods Patients who underwent 3-port LC with abdominal drainage tubes in the Department of Hepatobiliary Surgery of Linyi People’s Hospital from March 1,2023 to October 31,2023 due to gallstones with chronic cholecystitis were selected for this study.The patients were randomly divided into an experimental group and a control group.In the experimental group,the new abdominal drainage tube fixation method was used,while in the control group,the traditional method was used.Afterward,the quality of life of patient in terms of pain,activity,recovery time,and mental health status was evaluated.The exudate around the patient’s drainage tube was collected for bacterial culture and analysis.Results A total of 139 patients were randomly divided into an experimental group(70 patients)and a control group(69 patients).The patients’baseline characteristics were not significantly different.The patients in the experimental group had better outcomes in quality of life,with higher pain scores(24.03±2.37 vs.15.48±2.29,p<0.001)and activity scores(20.57±1.78 vs.14.13±1.43,p<0.001),and a shorter postoperative recovery time(2.36±0.68 d vs.2.96±1.34 d,p<0.001).The same results were shown in linear regression analysis scores of the 2 groups.The positive rate of bacterial culture in the exudate around the patient’s drainage tube in the experimental group was significantly lower than that in the control group(12.9%vs.43.5%,p<0.001);and furthermore,the positive rate of conditional pathogenic bacteria was even lower(7.1%vs.33.3%,p<0.001)in the experimental group than in the control group.Conclusion This new abdominal drainage tube fixation method can effectively promote patient rehabilitation and improve the quality of life for patient following 3-port LC with abdominal drainage tubes.
文摘With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.
基金Projects(51678547,41672296,51878634,51878185,41867034)supported by the National Natural Science Foundation of China。
文摘Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution is derived by using finite difference method and its correctness is assessed by comparing with existing analytical and numerical solutions.Based on the present solution,the effects of interface parameters,stress ratios(i.e.,final effective stress over initial effective stress,N_(σ))and the ratio c_(c)/c_(k)of compression index to permeability index on the consolidation behavior of soil are studied in detail.The results show that,the characteristics of one-dimensional nonlinear consolidation of soil are not only related to c_(c)/c_(k)and N_(σ),but also related to boundary conditions.In the engineering practice,the soil drainage rate of consolidation process can be designed by adjusting the values of interface parameters.
基金financially supported by the key Projects of the Chinese Academy of Sciences (Grant No.KZZD-EW-05-01-04)the National Science and Technology Support Program (Grant No.2012BAC06B02)the sub-program of Science and technology research and development plan from China Railway (Grant No.2014G004-A-5)
文摘Drainage canals are engineering structures widely used for debris flow mitigation.When passing through a drainage canal,debris flow usually scours the gully bed at the back of the rib sill of the drainage canal,which leads to failure of the rib sill.Therefore,the scour depth at the back of the rib sill is an important design problem and it is related to the economic benefits of engineering and service years.To explore the law of the depth of the scour pit after debris flow through drainage canal ribs,we first proposed a formula for the calculation of the maximum scour depth at the back of a rib sill based on energy conservation.We then conducted a series of simulation experiments to test the proposed formula.The experimental results show that the scour depth,trench slope and the distance between ribs all increase with a decrease in debris flow density.We then compared the results of experiments and formula calculations.Through the testing analysis,we found that the calculation results of the conductedformula correspond with the experimental results better.Finally,taking Qipan Gully as an example,we designed the ultimate depth of a drainage canal for debris flow using the calculation formula.
基金Project supported by the National Natural Science Foundation of China (No. 10972212)
文摘It is necessary to understand the features of air pressure in a drainage stack of a high-rise building for properly designing and operating a drainage system. This paper presents a mathematical model for predicting the stack performance. A step function is used to describe the effect of the air entrainment caused by the water discharged from branch pipes. An additional source term is introduced to reflect the gas-liquid interphase interaction (GLII) and stack base effect. The drainage stack is divided into upper and base parts. The air pressure in the upper part is predicted by a total variation diminishing (TVD) scheme, while in the base part, it is predicted by a characteristic line method (CLM). The predicted results are compared with the data measured in a real-scale high- rise test building. It is found that the additional source term in the present model is effective. It intensively influences the air pressure distribution in the stack. The air pressure is also sensitive to the velocity-adjusting parameter (VAP), the branch pipe air entrainment, and the conditions on the stack bottom.
基金The project supported by the National Natural Science Foundation of China
文摘This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.
基金Projects(51879104,52078206)supported by the National Natural Science Foundation of China。
文摘This paper presents the one-dimensional(1D)viscoelastic consolidation system of saturated clayey soil under continuous drainage boundaries.The fractional-derivative Merchant(FDM)model has been introduced into the consolidation system to simulate the viscoelasticity.Swartzendruber’s flow law is also introduced to describe the non-Darcian flow characteristics simultaneously.The generalized numerical solution of the 1D consolidation under continuous boundaries is given by the finite difference scheme.Furthermore,to illustrate the effectiveness of the numerical method,two simplified cases are compared against the current analytical and numerical results.Finally,the effects of boundary parameters and model parameters on the viscoelastic consolidation were illustrated and discussed.The results indicated that the boundary parameters have a significant influence on consolidation.The larger the values of boundary parameters,the faster the whole dissipation of the excess pore-water pressure and soils’settlement rate.Fractional-order and viscosity parameter have little effect on consolidation,which are primarily significant in the middle and late consolidation phases.With the increase of the modulus ratio,the whole consolidation process becomes faster.Moreover,considering Swartzendruber’s flow delays the consolidation rate of the soil layer.