Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conv...Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.展开更多
This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary ...This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary even order of accuracy.The main idea is to make use of the lower order compact schemes recursively,so as to obtain the high order compact schemes formally.Moreover,the schemes can be implemented efficiently by solving a series of tridiagonal systems recursively or the fast Fourier transform(FFT).With mathematical induction,the eigenvalues of the proposed differencing operators are shown to be bounded away from zero,which indicates the positive definiteness of the operators.To obtain numerical boundary conditions for the high order schemes,the simplified inverse Lax-Wendroff(SILW)procedure is adopted and the stability analysis is performed by the Godunov-Ryabenkii method and the eigenvalue spectrum visualization method.Various numerical experiments are provided to demonstrate the effectiveness and robustness of our algorithms.展开更多
The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran...The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.展开更多
The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional ...The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform(IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.展开更多
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within...In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.展开更多
Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties effici...Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties efficiently and reliably,this study developed an uncertainty inversion analysis method for rockfill material parameters using the stacking ensemble strategy and Jaya optimizer.The comprehensive implementation process of the proposed model was described with an illustrative CFRD example.First,the surrogate model method using the stacking ensemble algorithm was used to conduct the Monte Carlo stochastic finite element calculations with reduced computational cost and improved accuracy.Afterwards,the Jaya algorithm was used to inversely calculate the combination of the coefficient of variation of rockfill material parameters.This optimizer obtained higher accuracy and more significant uncertainty reduction than traditional optimizers.Overall,the developed model effectively identified the random parameters of rockfill materials.This study provided scientific references for uncertainty analysis of CFRDs.In addition,the proposed method can be applied to other similar engineering structures.展开更多
A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. Th...A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.展开更多
Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fab...Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fabric of space-time into a positive subspace-time that represents the space of causality and a negative subspace-time which represents a space without causality, thus, in the special case, we have new transformations for the coordinates of space and time modified from Lorentz transformations specific to each subspace, where the contraction of length disappears and the speed of light is no longer a universal constant. In the general case, we have new types of matric tensor, one for positive subspace-time and the other for negative subspace-time. We also find that the speed of the photon decreases in positive subspace-time until it reaches zero and increases in negative subspace-time until it reaches the speed of light when the photon reaches the Schwarzschild radius.展开更多
The electricity cost of agricultural irrigation and drainage in the Dahe Ex- periment Station was analyzed. The results showed that from 2012 to 2016, the annual total power and total electricity cost increased year b...The electricity cost of agricultural irrigation and drainage in the Dahe Ex- periment Station was analyzed. The results showed that from 2012 to 2016, the annual total power and total electricity cost increased year by year. The higher the electricity consumption was, the lower the factor adjusted power price was. The an- nual factor adjusted power price decreased from 532.5 yuan (above the national standard) to -599.78 yuan (below the national standard). The electricity consumption was always highest in June. The more the rainfall from June to September was, the less the monthly electricity usage was. The collect electricity charge to total electricity charge ratio was 1.26%-1.34%, the directory electricity charge to total electricity charge ratio was 96.34%-99.80%, and the electricity loss of transformer was 288-496 kW/h.展开更多
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
In the present study, peel tests and inverse analysis were performed to determine the interracial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al film...In the present study, peel tests and inverse analysis were performed to determine the interracial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250 μm and three peel angles of 90°, 135° and 180° were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interracial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result展开更多
Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal ...Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic.展开更多
As longwall caving mining method prevails rapidly in China coal mines, amount of gas emission from longwall faces and goaf area increased significantly. Using traditional gas drainage methods, such as drilling upward ...As longwall caving mining method prevails rapidly in China coal mines, amount of gas emission from longwall faces and goaf area increased significantly. Using traditional gas drainage methods, such as drilling upward holes to roof strata in tailgate or drilling inseam and cross-measure boreholes, could not meet methane drainage requirements in a gassy mine. The alternative is to drill boreholes from surface down to the Iongwall goaf area to drain the gas out. As soon as a coal seam is extracted out, the upper rock strata above the goaf start to collapse or become fractured depending upon the rock characteristics and the height above the coal seam. During overlying rock strata being fractured, boreholes in the area may be damaged due to ground movement after the passage of the Iongwall face. The sudden damage of a borehole may cause a Iongwall production halt or even a serious mine accident. A theoretical calculation of the stability of surface boreholes in mining affected area is introduced along with an example of determination of borehole and casing diameters is given for demonstration. By using this method for the drilling design, the damage of surface boreholes caused by excessive mining induced displacement can be effectively reduced if not totally avoided. Borehole and casing diameters as well as characteristics of filling materials can be determined using the proposed method by calculating the horizontal movement and vertical stain at different borehole depths.展开更多
In order to maintain the safety of underground constructions that significantly involve geo-material uncertainties,this paper delivers a new computation framework for conducting reliability-based design(RBD)of shallow...In order to maintain the safety of underground constructions that significantly involve geo-material uncertainties,this paper delivers a new computation framework for conducting reliability-based design(RBD)of shallow tunnel face stability,utilizing a simplified inverse first-order reliability method(FORM).The limit state functions defining tunnel face stability are established for both collapse and blow-out modes of the tunnel face failure,respectively,and the deterministic results of the tunnel face support pressure are obtained through three-dimensional finite element limit analysis(FELA).Because the inverse reliability method can directly capture the design support pressure according to prescribed target reliability index,the computational cost for probabilistic design of tunnel face stability is greatly reduced.By comparison with Monte Carlo simulation results,the accuracy and feasibility of the proposed method are verified.Further,this study presents a series of reliability-based design charts for vividly understanding the limit support pressure on tunnel face in both cohesionless(sandy)soil and cohesive soil stratums,and their optimal support pressure ranges are highlighted.The results show that in the case of sandy soil stratum,the blowout failure of tunnel face is extremely unlikely,whereas the collapse is the only possible failure mode.The parametric study of various geotechnical uncertainties also reveals that ignoring the potential correlation between soil shear strength parameters will lead to over-designed support pressure,and the coefficient of variation of internal friction angle has a greater influence on the tunnel face failure probability than that of the cohesion.展开更多
The uplift of the Arabian Shield and the opening of the Red Sea led to the development of steep drainage systems in the Western Arabian Peninsula. Although the Peninsula has been studied from a geological perspective,...The uplift of the Arabian Shield and the opening of the Red Sea led to the development of steep drainage systems in the Western Arabian Peninsula. Although the Peninsula has been studied from a geological perspective, in relation to oil production, plate tectonics and eolian systems such as sand dunes, the steep mountainous drainage basins have received much less attention. This paper aims to assess the characteristics and development of 36 drainage basins in the Western Arabian Peninsula, using a digital elevation model (DEM), principal component analysis (PCA), and hierarchical cluster analysis (CA). Three major principal components (PC1 to PC3) are found to explain 73% of total variance. CA divided the basins into two or four groups. The division by CA strongly reflects PC1, showing that the two analyses give comparable results. PC1 strongly reflects basin dimensions and drainage texture, and their positive correlations indicate the significant effect of basin relief and slope on mass wasting and limited stream incision in small basins under an arid climate. PC2 mainly reflects the effect of bedrock geology, suggesting that volcanic rocks tend to produce more elongated and less eroded immature basins than crystalline rocks do. PC3 mainly reflects the basin relief and slope and the length of each stream segment, which may also reflect the effect of mass wasting on stream development.展开更多
This study established numerical modeling using COMSOLTMto examine the influence of horizontal location and drainage ability of surface borehole on spontaneous combustion in longwall working face gob. Rescaled Range A...This study established numerical modeling using COMSOLTMto examine the influence of horizontal location and drainage ability of surface borehole on spontaneous combustion in longwall working face gob. Rescaled Range Analysis(R/S analysis) was employed to investigate the chaos characteristic of N_2/O_2 ratio from a surface borehole in 10416 working face gob, Yangliu Colliery, China. The simulation results show that there is always a circular ‘‘dissipation zone" around the drainage borehole and an elliptic ‘‘spontaneous combustion zone" in deep gob. Little influence was found on spontaneous combustion zone on the intake side of the gob but the width of spontaneous combustion zone in middle gob is enlarged, while the depth of spontaneous combustion zone near the return side is reduced. The R/S analysis indicates that the influence of surface borehole on spontaneous combustion can be divided into two stages by the chaos feature of N_2/O_2: safety drainage stage and spontaneous combustion initiating stage. It can be concluded that the methane drainage from gob through surface borehole can intervene in the distribution of spontaneous combustion zone in gob and the chaos feature of N_2/O_2 from surface borehole can effectively reflect coal spontaneous combustion condition in gob.展开更多
Drainage responds rapidly to tectonic changes and thus it is a potential parameter for teetonogeomorphological analysis. Drainage network of Potwar is a good geological record of movement, displacements, regional upli...Drainage responds rapidly to tectonic changes and thus it is a potential parameter for teetonogeomorphological analysis. Drainage network of Potwar is a good geological record of movement, displacements, regional uplifts and erosion of the tectonic units. This study focuses on utilizing drainage network extracted from Shuttle Radar Digital Elevation Data (SRTM-DEM) in order to constrain the structure of the Potwar Plateau. SWAN syncline divides Potwar into northern Potwar deformed zone (NPDZ) and southern Potwar platform zone (SPPZ). We extracted the drainage network from DEM and analyzed 112 streams using stream power law. Spatial distribution of concavity and steepness indices were used to prepare uplift rate map for the area. DEM was further utilized to extract lineaments to study the mutual relationship between lineaments and drainage patterns. We compared the local correlation between the extracted lineaments and drainage network of the area that gives us quantitative information and shows promising prospects. The streams in the NPDZ indicate high steepness values as compared to the streams in the SPPZ. The spatial distribution of geomorphic parameters distinctive deformation and uplift rates suggest the among eastern, central and western parts. The local correlation between drainage network and lineaments from DEM is strongly positive in the area within I km of radius.展开更多
Let B(E,F) be the set of all bounded linear operators from a Banach space E into another Banach space F,B^+(E, F) the set of all double splitting operators in B(E, F)and GI(A) the set of generalized inverses of A ∈ B...Let B(E,F) be the set of all bounded linear operators from a Banach space E into another Banach space F,B^+(E, F) the set of all double splitting operators in B(E, F)and GI(A) the set of generalized inverses of A ∈ B^+(E, F). In this paper we introduce an unbounded domain ?(A, A^+) in B(E, F) for A ∈ B^+(E, F) and A^+∈GI(A), and provide a necessary and sufficient condition for T ∈ ?(A, A^+). Then several conditions equivalent to the following property are proved: B = A+(IF+(T-A)A^+)^(-1) is the generalized inverse of T with R(B)=R(A^+) and N(B)=N(A^+), for T∈?(A, A^+), where IF is the identity on F. Also we obtain the smooth(C~∞) diffeomorphism M_A(A^+,T) from ?(A,A^+) onto itself with the fixed point A. Let S = {T ∈ ?(A, A^+) : R(T)∩ N(A^+) ={0}}, M(X) = {T ∈ B(E,F) : TN(X) ? R(X)} for X ∈ B(E,F)}, and F = {M(X) : ?X ∈B(E, F)}. Using the diffeomorphism M_A(A^+,T) we prove the following theorem: S is a smooth submanifold in B(E,F) and tangent to M(X) at any X ∈ S. The theorem expands the smooth integrability of F at A from a local neighborhoold at A to the global unbounded domain ?(A, A^+). It seems to be useful for developing global analysis and geomatrical method in differential equations.展开更多
Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relatio...Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.展开更多
An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied t...An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied to laboratory models designed to mimic the initiation and progression of BEP through a constricted vertical outlet.The inverse analysis uses three-dimensional(3D)finite element method(FEM)to successively produce models of the hydraulic head regime surrounding progressive stages of BEP based on observations at the sample surface and pore pressure measurements obtained from the laboratory models.The inverse analysis results in a series of 3D contour plots that represent the hydraulic-head regime at each stage of the BEP development,allowing for assessing the development of BEP mechanism as well as calculating the critical hydraulic conditions required for various BEP stages to initiate and progress.Interpretation of the results identified four significant stages of the piping process:(1)loosened zone initiation,(2)channel initiation and progression,(3)riser sand fluidization,and(4)loosened zone progression.Interpretation of the hydraulic head contour plots allows assessment of the critical hydraulic gradients needed to initiate and progress various components of the BEP development.展开更多
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(Grant No.42377174)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022ME198)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020006).
文摘Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.
基金supported by the NSFC grant 11801143J.Lu’s research is partially supported by the NSFC grant 11901213+3 种基金the National Key Research and Development Program of China grant 2021YFA1002900supported by the NSFC grant 11801140,12171177the Young Elite Scientists Sponsorship Program by Henan Association for Science and Technology of China grant 2022HYTP0009the Program for Young Key Teacher of Henan Province of China grant 2021GGJS067.
文摘This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary even order of accuracy.The main idea is to make use of the lower order compact schemes recursively,so as to obtain the high order compact schemes formally.Moreover,the schemes can be implemented efficiently by solving a series of tridiagonal systems recursively or the fast Fourier transform(FFT).With mathematical induction,the eigenvalues of the proposed differencing operators are shown to be bounded away from zero,which indicates the positive definiteness of the operators.To obtain numerical boundary conditions for the high order schemes,the simplified inverse Lax-Wendroff(SILW)procedure is adopted and the stability analysis is performed by the Godunov-Ryabenkii method and the eigenvalue spectrum visualization method.Various numerical experiments are provided to demonstrate the effectiveness and robustness of our algorithms.
基金supported by the National Natural Science Foundation of China(Grant No.U22A20594)the Fundamental Research Funds for the Central Universities(Grant No.B230205028)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0694).
文摘The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.
基金supported by the National Natural Science Foundation of China (61871146)the Fundamental Research Funds for the Central Universities (FRFCU5710093720)。
文摘The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform(IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140)the Key Laboratory ofRoad Construction Technology and Equipment(Chang’an University,No.300102253502).
文摘In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.
基金supported by the National Natural Science Foundation of China(Grants No.51879185 and 52179139)the Open Fund of the Hubei Key Laboratory of Construction and Management in Hydropower Engineering(Grant No.2020KSD06).
文摘Numerical simulation of concrete-faced rockfill dams(CFRDs)considering the spatial variability of rockfill has become a popular research topic in recent years.In order to determine uncertain rockfill properties efficiently and reliably,this study developed an uncertainty inversion analysis method for rockfill material parameters using the stacking ensemble strategy and Jaya optimizer.The comprehensive implementation process of the proposed model was described with an illustrative CFRD example.First,the surrogate model method using the stacking ensemble algorithm was used to conduct the Monte Carlo stochastic finite element calculations with reduced computational cost and improved accuracy.Afterwards,the Jaya algorithm was used to inversely calculate the combination of the coefficient of variation of rockfill material parameters.This optimizer obtained higher accuracy and more significant uncertainty reduction than traditional optimizers.Overall,the developed model effectively identified the random parameters of rockfill materials.This study provided scientific references for uncertainty analysis of CFRDs.In addition,the proposed method can be applied to other similar engineering structures.
文摘A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.
文摘Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fabric of space-time into a positive subspace-time that represents the space of causality and a negative subspace-time which represents a space without causality, thus, in the special case, we have new transformations for the coordinates of space and time modified from Lorentz transformations specific to each subspace, where the contraction of length disappears and the speed of light is no longer a universal constant. In the general case, we have new types of matric tensor, one for positive subspace-time and the other for negative subspace-time. We also find that the speed of the photon decreases in positive subspace-time until it reaches zero and increases in negative subspace-time until it reaches the speed of light when the photon reaches the Schwarzschild radius.
文摘The electricity cost of agricultural irrigation and drainage in the Dahe Ex- periment Station was analyzed. The results showed that from 2012 to 2016, the annual total power and total electricity cost increased year by year. The higher the electricity consumption was, the lower the factor adjusted power price was. The an- nual factor adjusted power price decreased from 532.5 yuan (above the national standard) to -599.78 yuan (below the national standard). The electricity consumption was always highest in June. The more the rainfall from June to September was, the less the monthly electricity usage was. The collect electricity charge to total electricity charge ratio was 1.26%-1.34%, the directory electricity charge to total electricity charge ratio was 96.34%-99.80%, and the electricity loss of transformer was 288-496 kW/h.
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
基金the Chinese Academy of Sciences(KJCX2-YW-M04)the National Natural Sciences Foundation of China(10432050,10428207,10672163,and 10721202)
文摘In the present study, peel tests and inverse analysis were performed to determine the interracial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250 μm and three peel angles of 90°, 135° and 180° were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interracial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result
基金The research results are part of a project carried out in 1999-2002 and financially supported by the US National Foundation(No.ASF EARO125968)in 2001-2003 and financially supported by the National Natural Science Foundation of China(Nos.40271089)the Major Sci-Tech Research Project of the Ministry of Education.
文摘Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic.
文摘As longwall caving mining method prevails rapidly in China coal mines, amount of gas emission from longwall faces and goaf area increased significantly. Using traditional gas drainage methods, such as drilling upward holes to roof strata in tailgate or drilling inseam and cross-measure boreholes, could not meet methane drainage requirements in a gassy mine. The alternative is to drill boreholes from surface down to the Iongwall goaf area to drain the gas out. As soon as a coal seam is extracted out, the upper rock strata above the goaf start to collapse or become fractured depending upon the rock characteristics and the height above the coal seam. During overlying rock strata being fractured, boreholes in the area may be damaged due to ground movement after the passage of the Iongwall face. The sudden damage of a borehole may cause a Iongwall production halt or even a serious mine accident. A theoretical calculation of the stability of surface boreholes in mining affected area is introduced along with an example of determination of borehole and casing diameters is given for demonstration. By using this method for the drilling design, the damage of surface boreholes caused by excessive mining induced displacement can be effectively reduced if not totally avoided. Borehole and casing diameters as well as characteristics of filling materials can be determined using the proposed method by calculating the horizontal movement and vertical stain at different borehole depths.
基金supported by the Natural Science Foundation of China[NSFC Grant Nos.51879091,52079045,41772287]support from the Key R&D Project of Zhejiang Province(2021C03159).
文摘In order to maintain the safety of underground constructions that significantly involve geo-material uncertainties,this paper delivers a new computation framework for conducting reliability-based design(RBD)of shallow tunnel face stability,utilizing a simplified inverse first-order reliability method(FORM).The limit state functions defining tunnel face stability are established for both collapse and blow-out modes of the tunnel face failure,respectively,and the deterministic results of the tunnel face support pressure are obtained through three-dimensional finite element limit analysis(FELA).Because the inverse reliability method can directly capture the design support pressure according to prescribed target reliability index,the computational cost for probabilistic design of tunnel face stability is greatly reduced.By comparison with Monte Carlo simulation results,the accuracy and feasibility of the proposed method are verified.Further,this study presents a series of reliability-based design charts for vividly understanding the limit support pressure on tunnel face in both cohesionless(sandy)soil and cohesive soil stratums,and their optimal support pressure ranges are highlighted.The results show that in the case of sandy soil stratum,the blowout failure of tunnel face is extremely unlikely,whereas the collapse is the only possible failure mode.The parametric study of various geotechnical uncertainties also reveals that ignoring the potential correlation between soil shear strength parameters will lead to over-designed support pressure,and the coefficient of variation of internal friction angle has a greater influence on the tunnel face failure probability than that of the cohesion.
文摘The uplift of the Arabian Shield and the opening of the Red Sea led to the development of steep drainage systems in the Western Arabian Peninsula. Although the Peninsula has been studied from a geological perspective, in relation to oil production, plate tectonics and eolian systems such as sand dunes, the steep mountainous drainage basins have received much less attention. This paper aims to assess the characteristics and development of 36 drainage basins in the Western Arabian Peninsula, using a digital elevation model (DEM), principal component analysis (PCA), and hierarchical cluster analysis (CA). Three major principal components (PC1 to PC3) are found to explain 73% of total variance. CA divided the basins into two or four groups. The division by CA strongly reflects PC1, showing that the two analyses give comparable results. PC1 strongly reflects basin dimensions and drainage texture, and their positive correlations indicate the significant effect of basin relief and slope on mass wasting and limited stream incision in small basins under an arid climate. PC2 mainly reflects the effect of bedrock geology, suggesting that volcanic rocks tend to produce more elongated and less eroded immature basins than crystalline rocks do. PC3 mainly reflects the basin relief and slope and the length of each stream segment, which may also reflect the effect of mass wasting on stream development.
基金provided by the National Natural Science Foundation of China (No. 51174198)China Scholarship Council (No. 201506420024)
文摘This study established numerical modeling using COMSOLTMto examine the influence of horizontal location and drainage ability of surface borehole on spontaneous combustion in longwall working face gob. Rescaled Range Analysis(R/S analysis) was employed to investigate the chaos characteristic of N_2/O_2 ratio from a surface borehole in 10416 working face gob, Yangliu Colliery, China. The simulation results show that there is always a circular ‘‘dissipation zone" around the drainage borehole and an elliptic ‘‘spontaneous combustion zone" in deep gob. Little influence was found on spontaneous combustion zone on the intake side of the gob but the width of spontaneous combustion zone in middle gob is enlarged, while the depth of spontaneous combustion zone near the return side is reduced. The R/S analysis indicates that the influence of surface borehole on spontaneous combustion can be divided into two stages by the chaos feature of N_2/O_2: safety drainage stage and spontaneous combustion initiating stage. It can be concluded that the methane drainage from gob through surface borehole can intervene in the distribution of spontaneous combustion zone in gob and the chaos feature of N_2/O_2 from surface borehole can effectively reflect coal spontaneous combustion condition in gob.
文摘Drainage responds rapidly to tectonic changes and thus it is a potential parameter for teetonogeomorphological analysis. Drainage network of Potwar is a good geological record of movement, displacements, regional uplifts and erosion of the tectonic units. This study focuses on utilizing drainage network extracted from Shuttle Radar Digital Elevation Data (SRTM-DEM) in order to constrain the structure of the Potwar Plateau. SWAN syncline divides Potwar into northern Potwar deformed zone (NPDZ) and southern Potwar platform zone (SPPZ). We extracted the drainage network from DEM and analyzed 112 streams using stream power law. Spatial distribution of concavity and steepness indices were used to prepare uplift rate map for the area. DEM was further utilized to extract lineaments to study the mutual relationship between lineaments and drainage patterns. We compared the local correlation between the extracted lineaments and drainage network of the area that gives us quantitative information and shows promising prospects. The streams in the NPDZ indicate high steepness values as compared to the streams in the SPPZ. The spatial distribution of geomorphic parameters distinctive deformation and uplift rates suggest the among eastern, central and western parts. The local correlation between drainage network and lineaments from DEM is strongly positive in the area within I km of radius.
文摘Let B(E,F) be the set of all bounded linear operators from a Banach space E into another Banach space F,B^+(E, F) the set of all double splitting operators in B(E, F)and GI(A) the set of generalized inverses of A ∈ B^+(E, F). In this paper we introduce an unbounded domain ?(A, A^+) in B(E, F) for A ∈ B^+(E, F) and A^+∈GI(A), and provide a necessary and sufficient condition for T ∈ ?(A, A^+). Then several conditions equivalent to the following property are proved: B = A+(IF+(T-A)A^+)^(-1) is the generalized inverse of T with R(B)=R(A^+) and N(B)=N(A^+), for T∈?(A, A^+), where IF is the identity on F. Also we obtain the smooth(C~∞) diffeomorphism M_A(A^+,T) from ?(A,A^+) onto itself with the fixed point A. Let S = {T ∈ ?(A, A^+) : R(T)∩ N(A^+) ={0}}, M(X) = {T ∈ B(E,F) : TN(X) ? R(X)} for X ∈ B(E,F)}, and F = {M(X) : ?X ∈B(E, F)}. Using the diffeomorphism M_A(A^+,T) we prove the following theorem: S is a smooth submanifold in B(E,F) and tangent to M(X) at any X ∈ S. The theorem expands the smooth integrability of F at A from a local neighborhoold at A to the global unbounded domain ?(A, A^+). It seems to be useful for developing global analysis and geomatrical method in differential equations.
基金Supported by National Natural Science Foundation of China(Grant No.51475211)
文摘Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.
基金support from the South China University of Technology for the PhD short-term visiting project。
文摘An inverse analysis procedure has been developed to interpret collected pore pressure data and observations during backward erosion piping(BEP)initiation and progression in sandy soils.The procedure has been applied to laboratory models designed to mimic the initiation and progression of BEP through a constricted vertical outlet.The inverse analysis uses three-dimensional(3D)finite element method(FEM)to successively produce models of the hydraulic head regime surrounding progressive stages of BEP based on observations at the sample surface and pore pressure measurements obtained from the laboratory models.The inverse analysis results in a series of 3D contour plots that represent the hydraulic-head regime at each stage of the BEP development,allowing for assessing the development of BEP mechanism as well as calculating the critical hydraulic conditions required for various BEP stages to initiate and progress.Interpretation of the results identified four significant stages of the piping process:(1)loosened zone initiation,(2)channel initiation and progression,(3)riser sand fluidization,and(4)loosened zone progression.Interpretation of the hydraulic head contour plots allows assessment of the critical hydraulic gradients needed to initiate and progress various components of the BEP development.