A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micr...A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.展开更多
In this study,a numerical analysis was conducted on the ductile fracture of a 2-mm diameter Mg-1Zn-0.5Mn-0.5Sr-0.1Ca alloy wire during drawing.The hexagonally close-packed crystal structure of Mg alloys causes asymmet...In this study,a numerical analysis was conducted on the ductile fracture of a 2-mm diameter Mg-1Zn-0.5Mn-0.5Sr-0.1Ca alloy wire during drawing.The hexagonally close-packed crystal structure of Mg alloys causes asymmetric fracture behavior,especially in the compression region.The aim of this study is to develop a comprehensive damage model for Mg alloy wire that accurately predicts ductile fracture,with a focus on the compression region.A novel experimental method was introduced to measure the ductile fracture of Mg alloy wires under different stress states.The wire drawing process was simulated using the Generalized Incremental Stress-State dependent damage(GISSMO)Model and the Semi-Analytical Model for Polymers(SAMP)model.The damage model's prediction and the experimental results were found to be in excellent agreement,especially in determining crack initiation.Computational analysis established a safe zone diagram for die angle and reduction ratio,and experimental validation confirmed the feasibility of this approach.The proposed damage model can provide a practical and reliable analysis for optimizing the drawing process of Mg alloy wire.展开更多
Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic ...Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic vibration on flexible-die deep drawing, an ultrasonic vibration with a frequency of 20 kHz and a maximum output of 1.5 kW was on the solid granule medium deep drawing of AZ31B magnesium alloy sheet. The results revealed that ultrasonic vibration promotes the pressure transmission performance of the granule medium and the formability of the sheet. The forming load declines with the ultrasonic amplitude during the drawing process as a result of the combined influence of the "surface effect" and the "softening" of the "volume effect".展开更多
Prandtl-Reuss flow rule and Hill’s yield criterion were adopted and combined with the concept of finite deformation theory, updated Lagrangian formulation, and a three-dimensional finite element analytical model was ...Prandtl-Reuss flow rule and Hill’s yield criterion were adopted and combined with the concept of finite deformation theory, updated Lagrangian formulation, and a three-dimensional finite element analytical model was established by application of quadrilateral four-node degenerated shell elements coupling into a rigid matrix to deal with the sheet metal forming problems. The fractured thickness of a specimen obtained from a simple tension test was used to be the fracture criterion for the numerical analysis to explore the relationship between punch load and stroke, the thickness distribution, the deformation history and the forming limit of work-piece in the elliptical cup drawing process. The numerical analysis and experiment results show that the punch load increases with the increase of punch stroke, and when the load reaches its maximum, the blank continues to deform with the increase of the punch stroke, resulting in a reduced load until the extension is completed. The minimum thickness of the work-piece concentrates in the contact region of the work-piece and long axis of the punch due to the smaller radius of the curvature of the long axis than the short axis. So the blanks bore the maximum tensile stress in the long axis. Through the limit drawing ratio defined by perimeter of the elliptical punch, the limit drawing ratio of this elliptical cup drawing is defined to be 2.136.展开更多
Major defects in forming of conical cups are wrinkles and rupture.Hydrodynamic deep drawing assisted by radial pressure(HDDRP) is a sheet hydroforming process for production of shell cups in one step.In this work,pr...Major defects in forming of conical cups are wrinkles and rupture.Hydrodynamic deep drawing assisted by radial pressure(HDDRP) is a sheet hydroforming process for production of shell cups in one step.In this work,process window diagrams(PWDs) for Al1050-O,pure copper and DIN 1623 St14 steel are obtained for HDDRP process.The PWD is determined to provide a quick assessment of part producibility for sheet hydroforming process.Finite element method is used for this purpose considering the process parameters including pressure path,and the blank material and its thickness.Numerical results are validated by experiments.It is shown that the sheets with less initial thickness and higher strength show better formability and uniformity of thickness distribution on final product.The results demonstrate that the obtained PWD can predict appropriate forming area and probability of rupture or wrinkling occurrence under different pressure loading paths.展开更多
Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, ...Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, both the bottom surface and the peripheral edge of sheets are under hydrodynamic pressure, so that the forming procedure is more uniform with low failure probability. Multi-layered sheets with complex geometries could be formed more easily with this technique compared with other traditional methods. Rupture is the main irrecoverable failure form in sheet forming processes. Prediction of rupture occurrence is of great importance for determining and optimizing the proper process parameters. In this research, a theoretical model was proposed to calculate the critical rupture pressure in production of double layered conical parts with hydrodynamic deep drawing process assisted by radial pressure. The effects of other process parameters on critical rupture pressure, such as punch tip radius, drawing ratio, coefficient of friction, sheet thickness and material properties were also discussed. The proposed model was compared with finite element simulation and validated by experiments on Al1050/St13 double layered sheets, where a good agreement was found with analytical results.展开更多
A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on pape...A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on paper provide effective channels for electron transmission with a low resistance of 95 X sq-1. The conductive organic material of polypyrrole coated on thin graphite sheets acts as the electrode material of the device. The as-fabricated SC exhibits a high specific capacitance of 52.9 F cm-3at a scan rate of 1 m V s-1. An energy storage unit fabricated by three full-charged series SCs can drive a commercial light-emitting diode robustly. This work demonstrated a simple, versatile and costeffective method for paper-based devices.展开更多
In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical s...In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical software ETA/DynaformS.5 which is based on LS-DYNA3D, the effects of independent radia! hydraulic pressure on the stress, strain and the sheet-thickness of aluminum-magnesium cylindrical cup with a hemispherical bottom were analyzed by numerical simulation. The feature of stress distribution is that there exists a stress-dividing circle in the flange, and the radius of dividing circle was determined by theoretical analysis and stimulation. The experimental results indicate that the reasonable match of independent radial hydraulic pressure and liquid chamber pressure can effectively reduce the thinning at the bottom of hemisphere, decrease the radial stress-strain, and improve the drawing limit of aiuminum-magnesium alloy cylindrical cup.展开更多
A kinematically admissible velocity field which is different from Avitzur's has been proposed for axial symmetrical rod drawing and extrusion.An upper-bound analytical solution in cylindrical coordinates has been ...A kinematically admissible velocity field which is different from Avitzur's has been proposed for axial symmetrical rod drawing and extrusion.An upper-bound analytical solution in cylindrical coordinates has been obtained without any mathematical simplification in this paper.展开更多
A math formula about the relation between fluid pressure after overflowing and punch stroke that can be applied in general FEM software was proposed. It is proved that theoretical results keep coincident to experiment...A math formula about the relation between fluid pressure after overflowing and punch stroke that can be applied in general FEM software was proposed. It is proved that theoretical results keep coincident to experimental results and the method to simulate hydrodynamic deep drawing process that integrates general FEM software with mathematical description is feasible. [展开更多
Aided by the FE-code. analysis is carried to find the proper hydroforming deep-drawing condition for the perfect forming of a conical cup that can not be drawn successfully by conventional deep drawing method. Hydraul...Aided by the FE-code. analysis is carried to find the proper hydroforming deep-drawing condition for the perfect forming of a conical cup that can not be drawn successfully by conventional deep drawing method. Hydraulic counter pressure must be reasonably controlled, otherwise defects such as fracture and wrinkling can not be avoided. Therefore, the forming procedure is divided into three stages, and the counter pressure is adjusted intentionally to make the blank clamped onto the punch at a suitable time, then deformation at dangerous area is resisted by the effect of the counter pressure and the conical cup can be formed without defects.展开更多
At present,iron and steel enterprises mainly use“after spot test ward”to control final product quality.However,it is impossible to realize on-line quality predetermining for all products by this traditional approach...At present,iron and steel enterprises mainly use“after spot test ward”to control final product quality.However,it is impossible to realize on-line quality predetermining for all products by this traditional approach,hence claims and returns often occur,resulting in major eco-nomic losses of enterprises.In order to realize the on-line quality predetermining for steel products during manufacturing process,the predic-tion models of mechanical properties based on deep learning have been proposed in this work.First,the mechanical properties of deep drawing steels were predicted by using LSTM(long short team memory),GRU(gated recurrent unit)network,and GPR(Gaussian process regression)model,and prediction accuracy and learning efficiency for different models were also discussed.Then,on-line re-learning methods for transfer learning models and model parameters were proposed.The experimental results show that not only the prediction accuracy of optimized trans-fer learning models has been improved,but also predetermining time was shortened to meet real time requirements of on-line property prede-termining.The industrial production data of interstitial-free(IF)steel was used to demonstrate that R2 value of GRU model in training stage reaches more than 0.99,and R2 value in testing stage is more than 0.96.展开更多
The electromotive force (EMF) changes in type K heavy gauge sheathed thermocouple cables was investigated. To cope with this discrepancy owing to EMF steep reduction and understand the difference between type K heavy ...The electromotive force (EMF) changes in type K heavy gauge sheathed thermocouple cables was investigated. To cope with this discrepancy owing to EMF steep reduction and understand the difference between type K heavy gauge sheathed thermocouple cables and small ones, the affects of EMF from sheath pipe, drawing times, annealing temperature, annealing time and annealing way were mainly studied and appropriately analyzed. The results show the change in the thermal EMF is related with the residual stress and crystal defects, which are imparted by cold work during manufacture. The affects of cold work can be removed by annealing. Finally, a feasible way of fabricating heavy gauge sheathed thermocouples was suggested according to practical situation.展开更多
With the development and widely used of the compute r technology, the CAD has been more and more used in the process of designing prod uct. The number of the engineering drawings will greatly increase because of the c...With the development and widely used of the compute r technology, the CAD has been more and more used in the process of designing prod uct. The number of the engineering drawings will greatly increase because of the continually appearance of the new products. As a result, it has become a badly needed to be solved problem for us that how to rapidly and efficiently search an d appropriately preserve and manage the drawings. In this paper, a method of bui lding the product drawing management system for extrusion aluminum-type materia ls is discussed. This system is designed for the profile graphic of the aluminou s section material management by using Group Technology (GT) principle. Accordin g to the GT, we developed a classifying-coding system and drawing management sy stem about the extrusion aluminum-type materials through analyzing a large numb er of extrusion aluminum-type materials section drawings. The coding system has realized the flexible coding and hidden coding of the extrusion aluminum-type materials and then enhanced the flexibility and the expansible of the system. By supplying the designer with the human-computer interaction interface the drawi ng management system has been able to resolve many difficult problems such as se arch and manage the existed drawings about the extrusion aluminum-type material s very well. At the same time, it also helps the developing work enhance the abi lity of inheriting by applying this kind of variant method. In a word, with the help of this system we can not only shorten the designing time greatly and reduc e the cost of the product but also research the designing drawings rapidly. In o rder to output the data information related to the part drawing, the system uses the data-exchange standard to which the drawing support-software adapted as d ata-exchange interface. The system is advantageous to building a standard of dr awing design and increasing the efficiency of searching drawing and enhancing th e information management, which have had a base for building the best management system in the future. In addition, the paper has a detailed analysis about the principle of flexible classification code and data structure.展开更多
The simulation of hydrodynamic deep drawing by means of FEM is an efficient method that can relieve experimental burden and find the optimum process parameters. Some problems such as mathematical description of cavity...The simulation of hydrodynamic deep drawing by means of FEM is an efficient method that can relieve experimental burden and find the optimum process parameters. Some problems such as mathematical description of cavity liquid flow pressure must be solved firstly. A math formula about hydrodynamic flow pressure that can be applied in general FEM software was proposed, and good results were gained. It was proved that the theoretical results keep coincident with experimental results.[展开更多
A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this...A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this technology. The theoretical calculation equation of forming load was obtained through mechanical analysis and the stress state in cup shells was analyzed by finite element simulation. The results show that powder cavity flexible forming technology can improve the forming limit of sheet metal. Compared with rigid die forming process, the thickness reduction in the punch fillet area significantly decreases and the drawing ratio increases from 1.8 to 2.2. The thinning compressive stress in the bottom of cup shell emerges, which makes the bottom of the cup shell in three-dimensional stress state and the stress in punch fillet region decrease due to powder reaction force, which can effectively inhibit the sever thinning of the sheet and prevent the generation of fracture defects.展开更多
A method of setting up a pressure-stroke characteristic of the working liquid in hydraulic drawing is studied. A pressure-stroke characteristic and software for controlling its forming process are also developed. An...A method of setting up a pressure-stroke characteristic of the working liquid in hydraulic drawing is studied. A pressure-stroke characteristic and software for controlling its forming process are also developed. And a set of pressure controlling devices with PLC as a central processor are designed. It can be got from the relevant experiments that the pressure-stroke characteristic is correct and its control for forming process is available.展开更多
There are mainly two methods of deep drawing analysis: experimental and analytical/numerical. Experimental analysis can be useful in analyzing the process to determine the process parameters that produce a defect free...There are mainly two methods of deep drawing analysis: experimental and analytical/numerical. Experimental analysis can be useful in analyzing the process to determine the process parameters that produce a defect free product, and the analytical/numerical modeling can be used to model and analyze the process through all stages of deformation. This approach is less time consuming and more economical. Sheet metal forming often includes biaxial in-plane deformation with non-proportional strain paths. In deep drawing of cylindrical cup, the deformation in the flange is dominated by pure shear deformation, while it changes to plane strain when the material is drawn into the die. This paper deals with the analysis of deep drawing of circular blanks into axi-symmetric cylindrical cup using numerical modeling. The blank drawability has been related both theoretically and experimentally with the initial diameter of the blank and deep drawing parameters. The strains in the radial and circumferential directions have been measured. A correlation on the flange thickness variation by taking into account the work hardening with the analytical and experimental values also has been searched.展开更多
The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an...The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an analylical upper-bound solution todrawing stress through idling rolls has been obtained in this paper.展开更多
基金the National Natural Science Foundation of China(Nos.U21A2051,52173297,52071133)the R&D Projects of Henan Academy of Sciences of China(No.220910009)+2 种基金the Key R&D and Promotion Projects of Henan Province of China(No.212102210441)the Joint Fund of Henan Science and Technology R&D Plan of China(No.222103810037)the Zhongyuan Scholar Workstation Funded Project of China(No.214400510028).
文摘A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.2020R1A2C2010986,2022M3H4A1A04085301)。
文摘In this study,a numerical analysis was conducted on the ductile fracture of a 2-mm diameter Mg-1Zn-0.5Mn-0.5Sr-0.1Ca alloy wire during drawing.The hexagonally close-packed crystal structure of Mg alloys causes asymmetric fracture behavior,especially in the compression region.The aim of this study is to develop a comprehensive damage model for Mg alloy wire that accurately predicts ductile fracture,with a focus on the compression region.A novel experimental method was introduced to measure the ductile fracture of Mg alloy wires under different stress states.The wire drawing process was simulated using the Generalized Incremental Stress-State dependent damage(GISSMO)Model and the Semi-Analytical Model for Polymers(SAMP)model.The damage model's prediction and the experimental results were found to be in excellent agreement,especially in determining crack initiation.Computational analysis established a safe zone diagram for die angle and reduction ratio,and experimental validation confirmed the feasibility of this approach.The proposed damage model can provide a practical and reliable analysis for optimizing the drawing process of Mg alloy wire.
基金Projects(51305385,51305386)supported by the National Natural Science Foundation of ChinaProject(QN20131080)supported by the Science Research Youth Foundation of Hebei Province Universities,China
文摘Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic vibration on flexible-die deep drawing, an ultrasonic vibration with a frequency of 20 kHz and a maximum output of 1.5 kW was on the solid granule medium deep drawing of AZ31B magnesium alloy sheet. The results revealed that ultrasonic vibration promotes the pressure transmission performance of the granule medium and the formability of the sheet. The forming load declines with the ultrasonic amplitude during the drawing process as a result of the combined influence of the "surface effect" and the "softening" of the "volume effect".
基金funded by research projects (NSC97-2221-E-129-003) of the National Science Council
文摘Prandtl-Reuss flow rule and Hill’s yield criterion were adopted and combined with the concept of finite deformation theory, updated Lagrangian formulation, and a three-dimensional finite element analytical model was established by application of quadrilateral four-node degenerated shell elements coupling into a rigid matrix to deal with the sheet metal forming problems. The fractured thickness of a specimen obtained from a simple tension test was used to be the fracture criterion for the numerical analysis to explore the relationship between punch load and stroke, the thickness distribution, the deformation history and the forming limit of work-piece in the elliptical cup drawing process. The numerical analysis and experiment results show that the punch load increases with the increase of punch stroke, and when the load reaches its maximum, the blank continues to deform with the increase of the punch stroke, resulting in a reduced load until the extension is completed. The minimum thickness of the work-piece concentrates in the contact region of the work-piece and long axis of the punch due to the smaller radius of the curvature of the long axis than the short axis. So the blanks bore the maximum tensile stress in the long axis. Through the limit drawing ratio defined by perimeter of the elliptical punch, the limit drawing ratio of this elliptical cup drawing is defined to be 2.136.
文摘Major defects in forming of conical cups are wrinkles and rupture.Hydrodynamic deep drawing assisted by radial pressure(HDDRP) is a sheet hydroforming process for production of shell cups in one step.In this work,process window diagrams(PWDs) for Al1050-O,pure copper and DIN 1623 St14 steel are obtained for HDDRP process.The PWD is determined to provide a quick assessment of part producibility for sheet hydroforming process.Finite element method is used for this purpose considering the process parameters including pressure path,and the blank material and its thickness.Numerical results are validated by experiments.It is shown that the sheets with less initial thickness and higher strength show better formability and uniformity of thickness distribution on final product.The results demonstrate that the obtained PWD can predict appropriate forming area and probability of rupture or wrinkling occurrence under different pressure loading paths.
文摘Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, both the bottom surface and the peripheral edge of sheets are under hydrodynamic pressure, so that the forming procedure is more uniform with low failure probability. Multi-layered sheets with complex geometries could be formed more easily with this technique compared with other traditional methods. Rupture is the main irrecoverable failure form in sheet forming processes. Prediction of rupture occurrence is of great importance for determining and optimizing the proper process parameters. In this research, a theoretical model was proposed to calculate the critical rupture pressure in production of double layered conical parts with hydrodynamic deep drawing process assisted by radial pressure. The effects of other process parameters on critical rupture pressure, such as punch tip radius, drawing ratio, coefficient of friction, sheet thickness and material properties were also discussed. The proposed model was compared with finite element simulation and validated by experiments on Al1050/St13 double layered sheets, where a good agreement was found with analytical results.
基金supported by the National Basic Research Program(2011CB933300)of Chinathe National Natural Science Foundation of China(11204093,11374110)‘the Fundamental Research Funds for the Central Universities’,HUST:2012QN114,2013TS033
文摘A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on paper provide effective channels for electron transmission with a low resistance of 95 X sq-1. The conductive organic material of polypyrrole coated on thin graphite sheets acts as the electrode material of the device. The as-fabricated SC exhibits a high specific capacitance of 52.9 F cm-3at a scan rate of 1 m V s-1. An energy storage unit fabricated by three full-charged series SCs can drive a commercial light-emitting diode robustly. This work demonstrated a simple, versatile and costeffective method for paper-based devices.
基金Funded by the National Natural Science Foundation of China(Nos.50525516, 50875062)
文摘In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical software ETA/DynaformS.5 which is based on LS-DYNA3D, the effects of independent radia! hydraulic pressure on the stress, strain and the sheet-thickness of aluminum-magnesium cylindrical cup with a hemispherical bottom were analyzed by numerical simulation. The feature of stress distribution is that there exists a stress-dividing circle in the flange, and the radius of dividing circle was determined by theoretical analysis and stimulation. The experimental results indicate that the reasonable match of independent radial hydraulic pressure and liquid chamber pressure can effectively reduce the thinning at the bottom of hemisphere, decrease the radial stress-strain, and improve the drawing limit of aiuminum-magnesium alloy cylindrical cup.
文摘A kinematically admissible velocity field which is different from Avitzur's has been proposed for axial symmetrical rod drawing and extrusion.An upper-bound analytical solution in cylindrical coordinates has been obtained without any mathematical simplification in this paper.
文摘A math formula about the relation between fluid pressure after overflowing and punch stroke that can be applied in general FEM software was proposed. It is proved that theoretical results keep coincident to experimental results and the method to simulate hydrodynamic deep drawing process that integrates general FEM software with mathematical description is feasible. [
文摘Aided by the FE-code. analysis is carried to find the proper hydroforming deep-drawing condition for the perfect forming of a conical cup that can not be drawn successfully by conventional deep drawing method. Hydraulic counter pressure must be reasonably controlled, otherwise defects such as fracture and wrinkling can not be avoided. Therefore, the forming procedure is divided into three stages, and the counter pressure is adjusted intentionally to make the blank clamped onto the punch at a suitable time, then deformation at dangerous area is resisted by the effect of the counter pressure and the conical cup can be formed without defects.
基金financially supported by the National Natural Science Foundation of China (No. 52175284)the State Key Lab of Advanced Metals and Materials in University of Science and Technology Beijing (No. 2021ZD08)
文摘At present,iron and steel enterprises mainly use“after spot test ward”to control final product quality.However,it is impossible to realize on-line quality predetermining for all products by this traditional approach,hence claims and returns often occur,resulting in major eco-nomic losses of enterprises.In order to realize the on-line quality predetermining for steel products during manufacturing process,the predic-tion models of mechanical properties based on deep learning have been proposed in this work.First,the mechanical properties of deep drawing steels were predicted by using LSTM(long short team memory),GRU(gated recurrent unit)network,and GPR(Gaussian process regression)model,and prediction accuracy and learning efficiency for different models were also discussed.Then,on-line re-learning methods for transfer learning models and model parameters were proposed.The experimental results show that not only the prediction accuracy of optimized trans-fer learning models has been improved,but also predetermining time was shortened to meet real time requirements of on-line property prede-termining.The industrial production data of interstitial-free(IF)steel was used to demonstrate that R2 value of GRU model in training stage reaches more than 0.99,and R2 value in testing stage is more than 0.96.
文摘The electromotive force (EMF) changes in type K heavy gauge sheathed thermocouple cables was investigated. To cope with this discrepancy owing to EMF steep reduction and understand the difference between type K heavy gauge sheathed thermocouple cables and small ones, the affects of EMF from sheath pipe, drawing times, annealing temperature, annealing time and annealing way were mainly studied and appropriately analyzed. The results show the change in the thermal EMF is related with the residual stress and crystal defects, which are imparted by cold work during manufacture. The affects of cold work can be removed by annealing. Finally, a feasible way of fabricating heavy gauge sheathed thermocouples was suggested according to practical situation.
文摘With the development and widely used of the compute r technology, the CAD has been more and more used in the process of designing prod uct. The number of the engineering drawings will greatly increase because of the continually appearance of the new products. As a result, it has become a badly needed to be solved problem for us that how to rapidly and efficiently search an d appropriately preserve and manage the drawings. In this paper, a method of bui lding the product drawing management system for extrusion aluminum-type materia ls is discussed. This system is designed for the profile graphic of the aluminou s section material management by using Group Technology (GT) principle. Accordin g to the GT, we developed a classifying-coding system and drawing management sy stem about the extrusion aluminum-type materials through analyzing a large numb er of extrusion aluminum-type materials section drawings. The coding system has realized the flexible coding and hidden coding of the extrusion aluminum-type materials and then enhanced the flexibility and the expansible of the system. By supplying the designer with the human-computer interaction interface the drawi ng management system has been able to resolve many difficult problems such as se arch and manage the existed drawings about the extrusion aluminum-type material s very well. At the same time, it also helps the developing work enhance the abi lity of inheriting by applying this kind of variant method. In a word, with the help of this system we can not only shorten the designing time greatly and reduc e the cost of the product but also research the designing drawings rapidly. In o rder to output the data information related to the part drawing, the system uses the data-exchange standard to which the drawing support-software adapted as d ata-exchange interface. The system is advantageous to building a standard of dr awing design and increasing the efficiency of searching drawing and enhancing th e information management, which have had a base for building the best management system in the future. In addition, the paper has a detailed analysis about the principle of flexible classification code and data structure.
文摘The simulation of hydrodynamic deep drawing by means of FEM is an efficient method that can relieve experimental burden and find the optimum process parameters. Some problems such as mathematical description of cavity liquid flow pressure must be solved firstly. A math formula about hydrodynamic flow pressure that can be applied in general FEM software was proposed, and good results were gained. It was proved that the theoretical results keep coincident with experimental results.[
基金Project(E2017203046)supported by the Natural Science Foundation of Hebei Province,China
文摘A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this technology. The theoretical calculation equation of forming load was obtained through mechanical analysis and the stress state in cup shells was analyzed by finite element simulation. The results show that powder cavity flexible forming technology can improve the forming limit of sheet metal. Compared with rigid die forming process, the thickness reduction in the punch fillet area significantly decreases and the drawing ratio increases from 1.8 to 2.2. The thinning compressive stress in the bottom of cup shell emerges, which makes the bottom of the cup shell in three-dimensional stress state and the stress in punch fillet region decrease due to powder reaction force, which can effectively inhibit the sever thinning of the sheet and prevent the generation of fracture defects.
基金This project is supported by Provincial Natural ScienceFoundation of Shanxi. Selected form Proceedings of 2000the First Inte
文摘A method of setting up a pressure-stroke characteristic of the working liquid in hydraulic drawing is studied. A pressure-stroke characteristic and software for controlling its forming process are also developed. And a set of pressure controlling devices with PLC as a central processor are designed. It can be got from the relevant experiments that the pressure-stroke characteristic is correct and its control for forming process is available.
文摘There are mainly two methods of deep drawing analysis: experimental and analytical/numerical. Experimental analysis can be useful in analyzing the process to determine the process parameters that produce a defect free product, and the analytical/numerical modeling can be used to model and analyze the process through all stages of deformation. This approach is less time consuming and more economical. Sheet metal forming often includes biaxial in-plane deformation with non-proportional strain paths. In deep drawing of cylindrical cup, the deformation in the flange is dominated by pure shear deformation, while it changes to plane strain when the material is drawn into the die. This paper deals with the analysis of deep drawing of circular blanks into axi-symmetric cylindrical cup using numerical modeling. The blank drawability has been related both theoretically and experimentally with the initial diameter of the blank and deep drawing parameters. The strains in the radial and circumferential directions have been measured. A correlation on the flange thickness variation by taking into account the work hardening with the analytical and experimental values also has been searched.
文摘The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an analylical upper-bound solution todrawing stress through idling rolls has been obtained in this paper.