Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic ...Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic vibration on flexible-die deep drawing, an ultrasonic vibration with a frequency of 20 kHz and a maximum output of 1.5 kW was on the solid granule medium deep drawing of AZ31B magnesium alloy sheet. The results revealed that ultrasonic vibration promotes the pressure transmission performance of the granule medium and the formability of the sheet. The forming load declines with the ultrasonic amplitude during the drawing process as a result of the combined influence of the "surface effect" and the "softening" of the "volume effect".展开更多
Prandtl-Reuss flow rule and Hill’s yield criterion were adopted and combined with the concept of finite deformation theory, updated Lagrangian formulation, and a three-dimensional finite element analytical model was ...Prandtl-Reuss flow rule and Hill’s yield criterion were adopted and combined with the concept of finite deformation theory, updated Lagrangian formulation, and a three-dimensional finite element analytical model was established by application of quadrilateral four-node degenerated shell elements coupling into a rigid matrix to deal with the sheet metal forming problems. The fractured thickness of a specimen obtained from a simple tension test was used to be the fracture criterion for the numerical analysis to explore the relationship between punch load and stroke, the thickness distribution, the deformation history and the forming limit of work-piece in the elliptical cup drawing process. The numerical analysis and experiment results show that the punch load increases with the increase of punch stroke, and when the load reaches its maximum, the blank continues to deform with the increase of the punch stroke, resulting in a reduced load until the extension is completed. The minimum thickness of the work-piece concentrates in the contact region of the work-piece and long axis of the punch due to the smaller radius of the curvature of the long axis than the short axis. So the blanks bore the maximum tensile stress in the long axis. Through the limit drawing ratio defined by perimeter of the elliptical punch, the limit drawing ratio of this elliptical cup drawing is defined to be 2.136.展开更多
A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on pape...A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on paper provide effective channels for electron transmission with a low resistance of 95 X sq-1. The conductive organic material of polypyrrole coated on thin graphite sheets acts as the electrode material of the device. The as-fabricated SC exhibits a high specific capacitance of 52.9 F cm-3at a scan rate of 1 m V s-1. An energy storage unit fabricated by three full-charged series SCs can drive a commercial light-emitting diode robustly. This work demonstrated a simple, versatile and costeffective method for paper-based devices.展开更多
In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical s...In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical software ETA/DynaformS.5 which is based on LS-DYNA3D, the effects of independent radia! hydraulic pressure on the stress, strain and the sheet-thickness of aluminum-magnesium cylindrical cup with a hemispherical bottom were analyzed by numerical simulation. The feature of stress distribution is that there exists a stress-dividing circle in the flange, and the radius of dividing circle was determined by theoretical analysis and stimulation. The experimental results indicate that the reasonable match of independent radial hydraulic pressure and liquid chamber pressure can effectively reduce the thinning at the bottom of hemisphere, decrease the radial stress-strain, and improve the drawing limit of aiuminum-magnesium alloy cylindrical cup.展开更多
A math formula about the relation between fluid pressure after overflowing and punch stroke that can be applied in general FEM software was proposed. It is proved that theoretical results keep coincident to experiment...A math formula about the relation between fluid pressure after overflowing and punch stroke that can be applied in general FEM software was proposed. It is proved that theoretical results keep coincident to experimental results and the method to simulate hydrodynamic deep drawing process that integrates general FEM software with mathematical description is feasible. [展开更多
A kinematically admissible velocity field which is different from Avitzur's has been proposed for axial symmetrical rod drawing and extrusion.An upper-bound analytical solution in cylindrical coordinates has been ...A kinematically admissible velocity field which is different from Avitzur's has been proposed for axial symmetrical rod drawing and extrusion.An upper-bound analytical solution in cylindrical coordinates has been obtained without any mathematical simplification in this paper.展开更多
Major defects in forming of conical cups are wrinkles and rupture.Hydrodynamic deep drawing assisted by radial pressure(HDDRP) is a sheet hydroforming process for production of shell cups in one step.In this work,pr...Major defects in forming of conical cups are wrinkles and rupture.Hydrodynamic deep drawing assisted by radial pressure(HDDRP) is a sheet hydroforming process for production of shell cups in one step.In this work,process window diagrams(PWDs) for Al1050-O,pure copper and DIN 1623 St14 steel are obtained for HDDRP process.The PWD is determined to provide a quick assessment of part producibility for sheet hydroforming process.Finite element method is used for this purpose considering the process parameters including pressure path,and the blank material and its thickness.Numerical results are validated by experiments.It is shown that the sheets with less initial thickness and higher strength show better formability and uniformity of thickness distribution on final product.The results demonstrate that the obtained PWD can predict appropriate forming area and probability of rupture or wrinkling occurrence under different pressure loading paths.展开更多
Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, ...Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, both the bottom surface and the peripheral edge of sheets are under hydrodynamic pressure, so that the forming procedure is more uniform with low failure probability. Multi-layered sheets with complex geometries could be formed more easily with this technique compared with other traditional methods. Rupture is the main irrecoverable failure form in sheet forming processes. Prediction of rupture occurrence is of great importance for determining and optimizing the proper process parameters. In this research, a theoretical model was proposed to calculate the critical rupture pressure in production of double layered conical parts with hydrodynamic deep drawing process assisted by radial pressure. The effects of other process parameters on critical rupture pressure, such as punch tip radius, drawing ratio, coefficient of friction, sheet thickness and material properties were also discussed. The proposed model was compared with finite element simulation and validated by experiments on Al1050/St13 double layered sheets, where a good agreement was found with analytical results.展开更多
Aided by the FE-code. analysis is carried to find the proper hydroforming deep-drawing condition for the perfect forming of a conical cup that can not be drawn successfully by conventional deep drawing method. Hydraul...Aided by the FE-code. analysis is carried to find the proper hydroforming deep-drawing condition for the perfect forming of a conical cup that can not be drawn successfully by conventional deep drawing method. Hydraulic counter pressure must be reasonably controlled, otherwise defects such as fracture and wrinkling can not be avoided. Therefore, the forming procedure is divided into three stages, and the counter pressure is adjusted intentionally to make the blank clamped onto the punch at a suitable time, then deformation at dangerous area is resisted by the effect of the counter pressure and the conical cup can be formed without defects.展开更多
The simulation of hydrodynamic deep drawing by means of FEM is an efficient method that can relieve experimental burden and find the optimum process parameters. Some problems such as mathematical description of cavity...The simulation of hydrodynamic deep drawing by means of FEM is an efficient method that can relieve experimental burden and find the optimum process parameters. Some problems such as mathematical description of cavity liquid flow pressure must be solved firstly. A math formula about hydrodynamic flow pressure that can be applied in general FEM software was proposed, and good results were gained. It was proved that the theoretical results keep coincident with experimental results.[展开更多
The electromotive force (EMF) changes in type K heavy gauge sheathed thermocouple cables was investigated. To cope with this discrepancy owing to EMF steep reduction and understand the difference between type K heavy ...The electromotive force (EMF) changes in type K heavy gauge sheathed thermocouple cables was investigated. To cope with this discrepancy owing to EMF steep reduction and understand the difference between type K heavy gauge sheathed thermocouple cables and small ones, the affects of EMF from sheath pipe, drawing times, annealing temperature, annealing time and annealing way were mainly studied and appropriately analyzed. The results show the change in the thermal EMF is related with the residual stress and crystal defects, which are imparted by cold work during manufacture. The affects of cold work can be removed by annealing. Finally, a feasible way of fabricating heavy gauge sheathed thermocouples was suggested according to practical situation.展开更多
A method of setting up a pressure-stroke characteristic of the working liquid in hydraulic drawing is studied. A pressure-stroke characteristic and software for controlling its forming process are also developed. An...A method of setting up a pressure-stroke characteristic of the working liquid in hydraulic drawing is studied. A pressure-stroke characteristic and software for controlling its forming process are also developed. And a set of pressure controlling devices with PLC as a central processor are designed. It can be got from the relevant experiments that the pressure-stroke characteristic is correct and its control for forming process is available.展开更多
With the development and widely used of the compute r technology, the CAD has been more and more used in the process of designing prod uct. The number of the engineering drawings will greatly increase because of the c...With the development and widely used of the compute r technology, the CAD has been more and more used in the process of designing prod uct. The number of the engineering drawings will greatly increase because of the continually appearance of the new products. As a result, it has become a badly needed to be solved problem for us that how to rapidly and efficiently search an d appropriately preserve and manage the drawings. In this paper, a method of bui lding the product drawing management system for extrusion aluminum-type materia ls is discussed. This system is designed for the profile graphic of the aluminou s section material management by using Group Technology (GT) principle. Accordin g to the GT, we developed a classifying-coding system and drawing management sy stem about the extrusion aluminum-type materials through analyzing a large numb er of extrusion aluminum-type materials section drawings. The coding system has realized the flexible coding and hidden coding of the extrusion aluminum-type materials and then enhanced the flexibility and the expansible of the system. By supplying the designer with the human-computer interaction interface the drawi ng management system has been able to resolve many difficult problems such as se arch and manage the existed drawings about the extrusion aluminum-type material s very well. At the same time, it also helps the developing work enhance the abi lity of inheriting by applying this kind of variant method. In a word, with the help of this system we can not only shorten the designing time greatly and reduc e the cost of the product but also research the designing drawings rapidly. In o rder to output the data information related to the part drawing, the system uses the data-exchange standard to which the drawing support-software adapted as d ata-exchange interface. The system is advantageous to building a standard of dr awing design and increasing the efficiency of searching drawing and enhancing th e information management, which have had a base for building the best management system in the future. In addition, the paper has a detailed analysis about the principle of flexible classification code and data structure.展开更多
hased on both the wrinkle model and fracturc model, the wrinkle critical tangent pressure and the fractureon critical radial tensile stress are calculated respectively. The maximum tangent pressure formula in the flan...hased on both the wrinkle model and fracturc model, the wrinkle critical tangent pressure and the fractureon critical radial tensile stress are calculated respectively. The maximum tangent pressure formula in the flange deformation zone and the maximum radial tensile stress formula in the cylinder-wall pass force zone are given, and both theno-wrinkle limitl criterion and no-fracture limit criterion are put froward. The prediction and control criterion anddiagram of both the wrinkle limit and fracture limit on cylindrical cup deep-drawing, the most suitable formingzone and the limit deep-drawing coefficient are obtained. Comparing with present experience formulae and actualproduct's production, this prediction and control are quite accurate.展开更多
There are mainly two methods of deep drawing analysis: experimental and analytical/numerical. Experimental analysis can be useful in analyzing the process to determine the process parameters that produce a defect free...There are mainly two methods of deep drawing analysis: experimental and analytical/numerical. Experimental analysis can be useful in analyzing the process to determine the process parameters that produce a defect free product, and the analytical/numerical modeling can be used to model and analyze the process through all stages of deformation. This approach is less time consuming and more economical. Sheet metal forming often includes biaxial in-plane deformation with non-proportional strain paths. In deep drawing of cylindrical cup, the deformation in the flange is dominated by pure shear deformation, while it changes to plane strain when the material is drawn into the die. This paper deals with the analysis of deep drawing of circular blanks into axi-symmetric cylindrical cup using numerical modeling. The blank drawability has been related both theoretically and experimentally with the initial diameter of the blank and deep drawing parameters. The strains in the radial and circumferential directions have been measured. A correlation on the flange thickness variation by taking into account the work hardening with the analytical and experimental values also has been searched.展开更多
A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this...A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this technology. The theoretical calculation equation of forming load was obtained through mechanical analysis and the stress state in cup shells was analyzed by finite element simulation. The results show that powder cavity flexible forming technology can improve the forming limit of sheet metal. Compared with rigid die forming process, the thickness reduction in the punch fillet area significantly decreases and the drawing ratio increases from 1.8 to 2.2. The thinning compressive stress in the bottom of cup shell emerges, which makes the bottom of the cup shell in three-dimensional stress state and the stress in punch fillet region decrease due to powder reaction force, which can effectively inhibit the sever thinning of the sheet and prevent the generation of fracture defects.展开更多
The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an...The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an analylical upper-bound solution todrawing stress through idling rolls has been obtained in this paper.展开更多
Based on the superfluous triangle material wrinkle model,the no wrinkle limit criterion of cylindrical cup multi deep drawing is calculated as the prediction and control of the wrinkle limit.According to fracture m...Based on the superfluous triangle material wrinkle model,the no wrinkle limit criterion of cylindrical cup multi deep drawing is calculated as the prediction and control of the wrinkle limit.According to fracture model,the no fracture limit criterion of cylindrical cup multi deep drawing is calculated as the prediction and control of the fracture limit.Combining the no wrinkle limit criterion with the no fracture limit criterion,the no wrinkle and no fracture limit criterion and diagram on cylindrecal cup multi deep drawing are given as the prediction and control of both wrinkle and fracture limits.In accordance with this can determine the limit deep drawing coefficient and minimum deep drawing coefficient,and can choose the deep drawing coefficient of multi deep drawing,blank holder force and deformation force by optimization choice method.Theory calculation and test data are highly consistent,and suitable for no flange multi deep drawing,flange multi deep drawing and rigid punch expanding展开更多
The prediction and control criterion of both the wrinkle limit and fracture limit on the cylindrical cup deep-drawing are given, and the prediction and control diagram of both the wrinkle limit and fracture limit are ...The prediction and control criterion of both the wrinkle limit and fracture limit on the cylindrical cup deep-drawing are given, and the prediction and control diagram of both the wrinkle limit and fracture limit are also given. The results show that it is suitable for no-flange cylindrical cup deep-drawing, narrow-flange cylindrical cup deep-drawing, wide-flange cylindrical cup deep-drawing/expanding compound forming and rigid punch expanding forming.展开更多
The value of a drawing die's cone angle has great influence on wire drawing. In order to determine the optimum value of a drawing die' s cone angle, the plastic deformation power Wi, shear deformation power Wi and f...The value of a drawing die's cone angle has great influence on wire drawing. In order to determine the optimum value of a drawing die' s cone angle, the plastic deformation power Wi, shear deformation power Wi and friction power of contact surface Wf were calculated using the upper bound theory with a reasonable and movement permitted velocity field according to the related characteristics. Then the relation between half cone angle and unit drawing force was obtained and it was compared with the result with the spherical velocity field. The relative error of the two near the optimal value is only about 0. 26% through comparing with existing calculated results. Finally, in an ABAQUS environment the finite element modal of the wire rod with 12. 5 mm diameter in first drawing pass was established and the axial drawing force in different cone angles was obtained using the ABAQUS/Explicit explicit integration method. The finite element method (FEM) results verify the results using the upper bound theory and this indicated that the velocity field and the relation between half cone angle and unit drawing force reasonable.展开更多
基金Projects(51305385,51305386)supported by the National Natural Science Foundation of ChinaProject(QN20131080)supported by the Science Research Youth Foundation of Hebei Province Universities,China
文摘Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic vibration on flexible-die deep drawing, an ultrasonic vibration with a frequency of 20 kHz and a maximum output of 1.5 kW was on the solid granule medium deep drawing of AZ31B magnesium alloy sheet. The results revealed that ultrasonic vibration promotes the pressure transmission performance of the granule medium and the formability of the sheet. The forming load declines with the ultrasonic amplitude during the drawing process as a result of the combined influence of the "surface effect" and the "softening" of the "volume effect".
基金funded by research projects (NSC97-2221-E-129-003) of the National Science Council
文摘Prandtl-Reuss flow rule and Hill’s yield criterion were adopted and combined with the concept of finite deformation theory, updated Lagrangian formulation, and a three-dimensional finite element analytical model was established by application of quadrilateral four-node degenerated shell elements coupling into a rigid matrix to deal with the sheet metal forming problems. The fractured thickness of a specimen obtained from a simple tension test was used to be the fracture criterion for the numerical analysis to explore the relationship between punch load and stroke, the thickness distribution, the deformation history and the forming limit of work-piece in the elliptical cup drawing process. The numerical analysis and experiment results show that the punch load increases with the increase of punch stroke, and when the load reaches its maximum, the blank continues to deform with the increase of the punch stroke, resulting in a reduced load until the extension is completed. The minimum thickness of the work-piece concentrates in the contact region of the work-piece and long axis of the punch due to the smaller radius of the curvature of the long axis than the short axis. So the blanks bore the maximum tensile stress in the long axis. Through the limit drawing ratio defined by perimeter of the elliptical punch, the limit drawing ratio of this elliptical cup drawing is defined to be 2.136.
基金supported by the National Basic Research Program(2011CB933300)of Chinathe National Natural Science Foundation of China(11204093,11374110)‘the Fundamental Research Funds for the Central Universities’,HUST:2012QN114,2013TS033
文摘A solid-state powerful supercapacitor(SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on paper provide effective channels for electron transmission with a low resistance of 95 X sq-1. The conductive organic material of polypyrrole coated on thin graphite sheets acts as the electrode material of the device. The as-fabricated SC exhibits a high specific capacitance of 52.9 F cm-3at a scan rate of 1 m V s-1. An energy storage unit fabricated by three full-charged series SCs can drive a commercial light-emitting diode robustly. This work demonstrated a simple, versatile and costeffective method for paper-based devices.
基金Funded by the National Natural Science Foundation of China(Nos.50525516, 50875062)
文摘In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical software ETA/DynaformS.5 which is based on LS-DYNA3D, the effects of independent radia! hydraulic pressure on the stress, strain and the sheet-thickness of aluminum-magnesium cylindrical cup with a hemispherical bottom were analyzed by numerical simulation. The feature of stress distribution is that there exists a stress-dividing circle in the flange, and the radius of dividing circle was determined by theoretical analysis and stimulation. The experimental results indicate that the reasonable match of independent radial hydraulic pressure and liquid chamber pressure can effectively reduce the thinning at the bottom of hemisphere, decrease the radial stress-strain, and improve the drawing limit of aiuminum-magnesium alloy cylindrical cup.
文摘A math formula about the relation between fluid pressure after overflowing and punch stroke that can be applied in general FEM software was proposed. It is proved that theoretical results keep coincident to experimental results and the method to simulate hydrodynamic deep drawing process that integrates general FEM software with mathematical description is feasible. [
文摘A kinematically admissible velocity field which is different from Avitzur's has been proposed for axial symmetrical rod drawing and extrusion.An upper-bound analytical solution in cylindrical coordinates has been obtained without any mathematical simplification in this paper.
文摘Major defects in forming of conical cups are wrinkles and rupture.Hydrodynamic deep drawing assisted by radial pressure(HDDRP) is a sheet hydroforming process for production of shell cups in one step.In this work,process window diagrams(PWDs) for Al1050-O,pure copper and DIN 1623 St14 steel are obtained for HDDRP process.The PWD is determined to provide a quick assessment of part producibility for sheet hydroforming process.Finite element method is used for this purpose considering the process parameters including pressure path,and the blank material and its thickness.Numerical results are validated by experiments.It is shown that the sheets with less initial thickness and higher strength show better formability and uniformity of thickness distribution on final product.The results demonstrate that the obtained PWD can predict appropriate forming area and probability of rupture or wrinkling occurrence under different pressure loading paths.
文摘Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, both the bottom surface and the peripheral edge of sheets are under hydrodynamic pressure, so that the forming procedure is more uniform with low failure probability. Multi-layered sheets with complex geometries could be formed more easily with this technique compared with other traditional methods. Rupture is the main irrecoverable failure form in sheet forming processes. Prediction of rupture occurrence is of great importance for determining and optimizing the proper process parameters. In this research, a theoretical model was proposed to calculate the critical rupture pressure in production of double layered conical parts with hydrodynamic deep drawing process assisted by radial pressure. The effects of other process parameters on critical rupture pressure, such as punch tip radius, drawing ratio, coefficient of friction, sheet thickness and material properties were also discussed. The proposed model was compared with finite element simulation and validated by experiments on Al1050/St13 double layered sheets, where a good agreement was found with analytical results.
文摘Aided by the FE-code. analysis is carried to find the proper hydroforming deep-drawing condition for the perfect forming of a conical cup that can not be drawn successfully by conventional deep drawing method. Hydraulic counter pressure must be reasonably controlled, otherwise defects such as fracture and wrinkling can not be avoided. Therefore, the forming procedure is divided into three stages, and the counter pressure is adjusted intentionally to make the blank clamped onto the punch at a suitable time, then deformation at dangerous area is resisted by the effect of the counter pressure and the conical cup can be formed without defects.
文摘The simulation of hydrodynamic deep drawing by means of FEM is an efficient method that can relieve experimental burden and find the optimum process parameters. Some problems such as mathematical description of cavity liquid flow pressure must be solved firstly. A math formula about hydrodynamic flow pressure that can be applied in general FEM software was proposed, and good results were gained. It was proved that the theoretical results keep coincident with experimental results.[
文摘The electromotive force (EMF) changes in type K heavy gauge sheathed thermocouple cables was investigated. To cope with this discrepancy owing to EMF steep reduction and understand the difference between type K heavy gauge sheathed thermocouple cables and small ones, the affects of EMF from sheath pipe, drawing times, annealing temperature, annealing time and annealing way were mainly studied and appropriately analyzed. The results show the change in the thermal EMF is related with the residual stress and crystal defects, which are imparted by cold work during manufacture. The affects of cold work can be removed by annealing. Finally, a feasible way of fabricating heavy gauge sheathed thermocouples was suggested according to practical situation.
基金This project is supported by Provincial Natural ScienceFoundation of Shanxi. Selected form Proceedings of 2000the First Inte
文摘A method of setting up a pressure-stroke characteristic of the working liquid in hydraulic drawing is studied. A pressure-stroke characteristic and software for controlling its forming process are also developed. And a set of pressure controlling devices with PLC as a central processor are designed. It can be got from the relevant experiments that the pressure-stroke characteristic is correct and its control for forming process is available.
文摘With the development and widely used of the compute r technology, the CAD has been more and more used in the process of designing prod uct. The number of the engineering drawings will greatly increase because of the continually appearance of the new products. As a result, it has become a badly needed to be solved problem for us that how to rapidly and efficiently search an d appropriately preserve and manage the drawings. In this paper, a method of bui lding the product drawing management system for extrusion aluminum-type materia ls is discussed. This system is designed for the profile graphic of the aluminou s section material management by using Group Technology (GT) principle. Accordin g to the GT, we developed a classifying-coding system and drawing management sy stem about the extrusion aluminum-type materials through analyzing a large numb er of extrusion aluminum-type materials section drawings. The coding system has realized the flexible coding and hidden coding of the extrusion aluminum-type materials and then enhanced the flexibility and the expansible of the system. By supplying the designer with the human-computer interaction interface the drawi ng management system has been able to resolve many difficult problems such as se arch and manage the existed drawings about the extrusion aluminum-type material s very well. At the same time, it also helps the developing work enhance the abi lity of inheriting by applying this kind of variant method. In a word, with the help of this system we can not only shorten the designing time greatly and reduc e the cost of the product but also research the designing drawings rapidly. In o rder to output the data information related to the part drawing, the system uses the data-exchange standard to which the drawing support-software adapted as d ata-exchange interface. The system is advantageous to building a standard of dr awing design and increasing the efficiency of searching drawing and enhancing th e information management, which have had a base for building the best management system in the future. In addition, the paper has a detailed analysis about the principle of flexible classification code and data structure.
文摘hased on both the wrinkle model and fracturc model, the wrinkle critical tangent pressure and the fractureon critical radial tensile stress are calculated respectively. The maximum tangent pressure formula in the flange deformation zone and the maximum radial tensile stress formula in the cylinder-wall pass force zone are given, and both theno-wrinkle limitl criterion and no-fracture limit criterion are put froward. The prediction and control criterion anddiagram of both the wrinkle limit and fracture limit on cylindrical cup deep-drawing, the most suitable formingzone and the limit deep-drawing coefficient are obtained. Comparing with present experience formulae and actualproduct's production, this prediction and control are quite accurate.
文摘There are mainly two methods of deep drawing analysis: experimental and analytical/numerical. Experimental analysis can be useful in analyzing the process to determine the process parameters that produce a defect free product, and the analytical/numerical modeling can be used to model and analyze the process through all stages of deformation. This approach is less time consuming and more economical. Sheet metal forming often includes biaxial in-plane deformation with non-proportional strain paths. In deep drawing of cylindrical cup, the deformation in the flange is dominated by pure shear deformation, while it changes to plane strain when the material is drawn into the die. This paper deals with the analysis of deep drawing of circular blanks into axi-symmetric cylindrical cup using numerical modeling. The blank drawability has been related both theoretically and experimentally with the initial diameter of the blank and deep drawing parameters. The strains in the radial and circumferential directions have been measured. A correlation on the flange thickness variation by taking into account the work hardening with the analytical and experimental values also has been searched.
基金Project(E2017203046)supported by the Natural Science Foundation of Hebei Province,China
文摘A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this technology. The theoretical calculation equation of forming load was obtained through mechanical analysis and the stress state in cup shells was analyzed by finite element simulation. The results show that powder cavity flexible forming technology can improve the forming limit of sheet metal. Compared with rigid die forming process, the thickness reduction in the punch fillet area significantly decreases and the drawing ratio increases from 1.8 to 2.2. The thinning compressive stress in the bottom of cup shell emerges, which makes the bottom of the cup shell in three-dimensional stress state and the stress in punch fillet region decrease due to powder reaction force, which can effectively inhibit the sever thinning of the sheet and prevent the generation of fracture defects.
文摘The relocity and sirain-rate .field which are different from Avilzur's have beenestablished in Caitesian coordinates. Using the integral as a function of the upper limitand integration depending on a parameler, an analylical upper-bound solution todrawing stress through idling rolls has been obtained in this paper.
文摘Based on the superfluous triangle material wrinkle model,the no wrinkle limit criterion of cylindrical cup multi deep drawing is calculated as the prediction and control of the wrinkle limit.According to fracture model,the no fracture limit criterion of cylindrical cup multi deep drawing is calculated as the prediction and control of the fracture limit.Combining the no wrinkle limit criterion with the no fracture limit criterion,the no wrinkle and no fracture limit criterion and diagram on cylindrecal cup multi deep drawing are given as the prediction and control of both wrinkle and fracture limits.In accordance with this can determine the limit deep drawing coefficient and minimum deep drawing coefficient,and can choose the deep drawing coefficient of multi deep drawing,blank holder force and deformation force by optimization choice method.Theory calculation and test data are highly consistent,and suitable for no flange multi deep drawing,flange multi deep drawing and rigid punch expanding
文摘The prediction and control criterion of both the wrinkle limit and fracture limit on the cylindrical cup deep-drawing are given, and the prediction and control diagram of both the wrinkle limit and fracture limit are also given. The results show that it is suitable for no-flange cylindrical cup deep-drawing, narrow-flange cylindrical cup deep-drawing, wide-flange cylindrical cup deep-drawing/expanding compound forming and rigid punch expanding forming.
基金supported by Foundation of Guizhou Science and Technology Department under Grant No.[2008]2210 and No.[2009]3009Foundation of Guizhou University under Grant No. [2007]25
文摘The value of a drawing die's cone angle has great influence on wire drawing. In order to determine the optimum value of a drawing die' s cone angle, the plastic deformation power Wi, shear deformation power Wi and friction power of contact surface Wf were calculated using the upper bound theory with a reasonable and movement permitted velocity field according to the related characteristics. Then the relation between half cone angle and unit drawing force was obtained and it was compared with the result with the spherical velocity field. The relative error of the two near the optimal value is only about 0. 26% through comparing with existing calculated results. Finally, in an ABAQUS environment the finite element modal of the wire rod with 12. 5 mm diameter in first drawing pass was established and the axial drawing force in different cone angles was obtained using the ABAQUS/Explicit explicit integration method. The finite element method (FEM) results verify the results using the upper bound theory and this indicated that the velocity field and the relation between half cone angle and unit drawing force reasonable.