In this paper, a successfully studied and developed master - slave muld - microcomputers control system based on PC - BUS for hollow spindle fancy yarn spinning machine, mainly Its overall scheme, software and hardwar...In this paper, a successfully studied and developed master - slave muld - microcomputers control system based on PC - BUS for hollow spindle fancy yarn spinning machine, mainly Its overall scheme, software and hardware construction, is introduced. Spinning experiments show that the system achieves satisfactory result. This system can solve the diftkultles of mechatronical fusion between domestic hollow splndk fancy yarn spuming muchine and its microcomputer control technology.展开更多
The machine tool is one of the new products developed and produced by the Shanghai No.8 Machine Tool Plant. It adopts a lift adjustable wiretrame and molybdenum filament tensioning mechanism with large cutting thickne...The machine tool is one of the new products developed and produced by the Shanghai No.8 Machine Tool Plant. It adopts a lift adjustable wiretrame and molybdenum filament tensioning mechanism with large cutting thickness and high machining precision. It is equipped with an advanced IBM-PC 386 microcomputer-controlled system, with strong performance and CRT display. Man/展开更多
Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com-...Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions.展开更多
Background and aims:Hepatocellular carcinoma(HCC),which is prevalent worldwide and has a high mortality rate,needs to be effectively diagnosed.We aimed to evaluate the significance of plasma microRNA-15a/16-1(miR-15a/...Background and aims:Hepatocellular carcinoma(HCC),which is prevalent worldwide and has a high mortality rate,needs to be effectively diagnosed.We aimed to evaluate the significance of plasma microRNA-15a/16-1(miR-15a/16)as a biomarker of hepatitis B virus-related HCC(HBV-HCC)using the machine learning model.This study was the first large-scale investigation of these two miRNAs in HCC plasma samples.Methods:Using quantitative polymerase chain reaction,we measured the plasma miR-15a/16 levels in a total of 766 participants,including 74 healthy controls,335 with chronic hepatitis B(CHB),47 with compensated liver cirrhosis,and 310 with HBV-HCC.The diagnostic performance of miR-15a/16 was examined using a machine learning model and compared with that of alpha-fetoprotein(AFP).Lastly,to validate the diagnostic efficiency of miR-15a/16,we performed pseudotemporal sorting of the samples to simulate progression from CHB to HCC.Results:Plasma miR-15a/16 was significantly decreased in HCC than in all control groups(P<0.05 for all).In the training cohort,the area under the receiver operating characteristic curve(AUC),sensitivity,and average precision(AP)for the detection of HCC were higher for miR-15a(AUC=0.80,67.3%,AP=0.80)and miR-16(AUC=0.83,79.0%,AP=0.83)than for AFP(AUC=0.74,61.7%,AP=0.72).Combining miR-15a/16 with AFP increased the AUC to 0.86(sensitivity 85.9%)and the AP to 0.85 and was significantly superior to the other markers in this study(P<0.05 for all),as further demonstrated by the detection error tradeoff curves.Moreover,miR-15a/16 impressively showed potent diagnostic power in early-stage,small-tumor,and AFP-negative HCC.A validation cohort confirmed these results.Lastly,the simulated follow-up of patients further validated the diagnostic efficiency of miR-15a/16.Conclusions:We developed and validated a plasma miR-15a/16-based machine learning model,which exhibited better diagnostic performance for the early diagnosis of HCC compared to that of AFP.展开更多
Railway transportation system is a critical sector where design methods and techniques are defined by international standards in order to reduce possible risks to an acceptable minimum level. CENELEC 50128 strongly re...Railway transportation system is a critical sector where design methods and techniques are defined by international standards in order to reduce possible risks to an acceptable minimum level. CENELEC 50128 strongly recommends the utilization of finite state machines during system modelling stage and formal proof methods during the verifi- cation and testing stages of control algorithms. Due to the high importance of interlocking table at the design state of a sig- nalization system, the modelling and verification of inter- locking tables are examined in this work. For this purpose, abstract state machines are used as a modelling tool. The developed models have been performed in a generalized structure such that the model control can be done automatically for the interlocking systems. In this study, NuSMV is used at the verification state. Also, the consistency of the developed models has been supervised through fault injection. The developed models and software components are applied on a real railway station operated by Metro Istanbul Co.展开更多
Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with...Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.展开更多
In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of th...In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of the fixed table is constructed and analyzed by using ANSYS software.Based on the results of static analysis and modal analysis,the maximum deformation,the maximum stress,and natural frequencies are obtained.Then,the sensitivity analysis and topology optimization are carried out to find out the parameters to be optimized.The fixed table is reconstructed according to optimal design scheme.In the comparison of the results between original model and the optimized one,the maximum deformation and stress are decreased by 71.73%and 60.27%respectively.At the same time,the natural frequencies from the first mode to the sixth mode are increased by 30.28%,29.57%,29.51%,31.52%,22.19%,and 21.80%,respectively.The method can provide technology guide for the design and optimization of machining structure.展开更多
Abnormalities in the transition betweenα-helices andβ-sheets(α-βtransition)may lead to devastating neurodegenerative diseases,such as Parkinson's syndrome and Alzheimer's disease.Ionic liquids(ILs)are pote...Abnormalities in the transition betweenα-helices andβ-sheets(α-βtransition)may lead to devastating neurodegenerative diseases,such as Parkinson's syndrome and Alzheimer's disease.Ionic liquids(ILs)are potential drugs for targeted therapies against these diseases because of their excellent bioactivity and designability of ILs.However,the mechanism through which ILs regulate the aα-βtransition remains unclear.Herein,a combination of GPU-accelerated microsecond molecular dynamics simulations,correlation analysis,and machine learning was used to probe the dynamicalα-βtransition process induced by ILs of 1-alkyl-3-methylimidazolium chloride([C_(n)mim]cl)and its molecular mechanism.Interestingly,the cation of [C_(n)mim]+in ILs can spontaneously insert into the peptides as free ions(n≤10)and clusters(n≥11).Such insertion can significantly inhibit theα-β,transition and the inhibiting ability for the clusters is more significant than that of free ions,where[Ciomim]+and[C_(12)mim]+can reduce the maximumβ-sheet content of the peptide by 18.5% and 44.9%,respectively.Furthermore,the correlation analysis and machine learning method were used to develop a predictive model accounting for the influencing factors on theα-βtransition,which could accurately predict the effect of ILs on theα-βtransition.Overall,these quantitative results may not only deepen the understanding of the role of ILs in theα-βtransition but also guide the development of the IL-based treatments for related diseases.展开更多
Machining of micro holes with micro electro- chemical machining (micro ECM) process has been carried out with an indigenously developed set up. This paper describes relevant problems and solutions for the circular m...Machining of micro holes with micro electro- chemical machining (micro ECM) process has been carried out with an indigenously developed set up. This paper describes relevant problems and solutions for the circular micro holes machining process on 304 stainless steel sheets with 60 μm thickness using high speed steel cylindrical tool of diameter 500 ~tm and using dilute I-I2SO4 as elec- trolyte. The taper angle variation of the machined hole is analyzed and reported for different experimental setting parameters. The minimum value of the taper angle of machined holes is achieved at the parameter setting of 0.4 mol/L H2504, 700 kHz, 600 ns and 21 V, for stainless steel sheets and HSS tool.展开更多
To prevent malicious virtual machine from harming the security of vTPM-VM live migration process, we propose an im- proved vTPM-VM live migration protocol which uses a TPM-based integrity verification policy and a spe...To prevent malicious virtual machine from harming the security of vTPM-VM live migration process, we propose an im- proved vTPM-VM live migration protocol which uses a TPM-based integrity verification policy and a specific encryption scheme to enhance security. The TPM-based integrity verification policy is presented to ensure that all participating entities in this process are trustworthy. In data transfer phase, the specific encryp- tion scheme is designed to associate the decipher process with one certain platform status so that only the destination platform can gain the key data of the migrated VM and vTPM instance. The security of this new protocol is analyzed. The results show that this protocol can effectively resist most of the attacks in the proc- ess ofvTPM-VM live migration.展开更多
Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising app...Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising application in this field. The outstanding properties lead to challenging machining processes. High strength and low heat conductivity affect high mechanical and thermal loads for the cutting edge. Thus, the machining process is characterized by a rapid development of tool wear even at low cutting parameter. To reach a sufficient productivity it is necessary to dissipate the resulting heat from the cutting edge by a coolant. Therefore the cryogenic machining of two different titanium alloys is investigated in this work. The results point out the different behavior of the machining processes under cryogenic conditions because of the reduced thermal load for the cutting tool. According to this investigation, the cryogenic cooling with COa enables an increase of the tool life in comparison to emulsion based cooling principles when machining the α+β-titanium alloy Ti-6Al-4V. The machining process of the high strength titanium alloy Ti-6Al-2Sn-4Zr-6Mo requires an additional lubrication realized by a minimum quantity lubrication (MQL) with oil. This combined cool- ing leads to a smoother chip underside and to slender shear bands between the different chip segments.展开更多
文摘In this paper, a successfully studied and developed master - slave muld - microcomputers control system based on PC - BUS for hollow spindle fancy yarn spinning machine, mainly Its overall scheme, software and hardware construction, is introduced. Spinning experiments show that the system achieves satisfactory result. This system can solve the diftkultles of mechatronical fusion between domestic hollow splndk fancy yarn spuming muchine and its microcomputer control technology.
文摘The machine tool is one of the new products developed and produced by the Shanghai No.8 Machine Tool Plant. It adopts a lift adjustable wiretrame and molybdenum filament tensioning mechanism with large cutting thickness and high machining precision. It is equipped with an advanced IBM-PC 386 microcomputer-controlled system, with strong performance and CRT display. Man/
基金Supported by National Natural Science Foundation of China(Grant No.51675098)
文摘Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions.
基金supported by Research and Development Planned Project in Key Areas of Guangdong Province(No.2019B110233002)National Natural Science Foundation of China(No.12171494 and 11931019)+3 种基金Natural Science Foundation of Guangdong Province,China(No.2022A1515011540)Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University(No.2020B1212060032)Joint Key Projects of City and Hospital of Guangzhou Science and Technology(No.202201020422)General Planned Project of Guangzhou Science and Technology(No.202201010950).
文摘Background and aims:Hepatocellular carcinoma(HCC),which is prevalent worldwide and has a high mortality rate,needs to be effectively diagnosed.We aimed to evaluate the significance of plasma microRNA-15a/16-1(miR-15a/16)as a biomarker of hepatitis B virus-related HCC(HBV-HCC)using the machine learning model.This study was the first large-scale investigation of these two miRNAs in HCC plasma samples.Methods:Using quantitative polymerase chain reaction,we measured the plasma miR-15a/16 levels in a total of 766 participants,including 74 healthy controls,335 with chronic hepatitis B(CHB),47 with compensated liver cirrhosis,and 310 with HBV-HCC.The diagnostic performance of miR-15a/16 was examined using a machine learning model and compared with that of alpha-fetoprotein(AFP).Lastly,to validate the diagnostic efficiency of miR-15a/16,we performed pseudotemporal sorting of the samples to simulate progression from CHB to HCC.Results:Plasma miR-15a/16 was significantly decreased in HCC than in all control groups(P<0.05 for all).In the training cohort,the area under the receiver operating characteristic curve(AUC),sensitivity,and average precision(AP)for the detection of HCC were higher for miR-15a(AUC=0.80,67.3%,AP=0.80)and miR-16(AUC=0.83,79.0%,AP=0.83)than for AFP(AUC=0.74,61.7%,AP=0.72).Combining miR-15a/16 with AFP increased the AUC to 0.86(sensitivity 85.9%)and the AP to 0.85 and was significantly superior to the other markers in this study(P<0.05 for all),as further demonstrated by the detection error tradeoff curves.Moreover,miR-15a/16 impressively showed potent diagnostic power in early-stage,small-tumor,and AFP-negative HCC.A validation cohort confirmed these results.Lastly,the simulated follow-up of patients further validated the diagnostic efficiency of miR-15a/16.Conclusions:We developed and validated a plasma miR-15a/16-based machine learning model,which exhibited better diagnostic performance for the early diagnosis of HCC compared to that of AFP.
文摘Railway transportation system is a critical sector where design methods and techniques are defined by international standards in order to reduce possible risks to an acceptable minimum level. CENELEC 50128 strongly recommends the utilization of finite state machines during system modelling stage and formal proof methods during the verifi- cation and testing stages of control algorithms. Due to the high importance of interlocking table at the design state of a sig- nalization system, the modelling and verification of inter- locking tables are examined in this work. For this purpose, abstract state machines are used as a modelling tool. The developed models have been performed in a generalized structure such that the model control can be done automatically for the interlocking systems. In this study, NuSMV is used at the verification state. Also, the consistency of the developed models has been supervised through fault injection. The developed models and software components are applied on a real railway station operated by Metro Istanbul Co.
基金supported by the National Natural Science Foundation (71301119)the Shanghai Natural Science Foundation (12ZR1434100)
文摘Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.
基金National Major Scientific&Technological Special Program for"High-Grade CNC and Basic Manufacturing Equipment"of China(No.2012ZX04011-031)Science and Technology Programs of Sichuan Province,China(No.2010GZ0250,No.2011GZ0075)
文摘In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of the fixed table is constructed and analyzed by using ANSYS software.Based on the results of static analysis and modal analysis,the maximum deformation,the maximum stress,and natural frequencies are obtained.Then,the sensitivity analysis and topology optimization are carried out to find out the parameters to be optimized.The fixed table is reconstructed according to optimal design scheme.In the comparison of the results between original model and the optimized one,the maximum deformation and stress are decreased by 71.73%and 60.27%respectively.At the same time,the natural frequencies from the first mode to the sixth mode are increased by 30.28%,29.57%,29.51%,31.52%,22.19%,and 21.80%,respectively.The method can provide technology guide for the design and optimization of machining structure.
基金the National Natural Science Foundation of China(21834006,22078322,21978293,and 21978027)the Youth Innovation Promotion Association of CAS(2021046,Y2021046)State Key Laboratory of Treatments and Recycling for Organic Effluents by Adsorption in Petroleum and Chemical Industry(SDHY2114).
文摘Abnormalities in the transition betweenα-helices andβ-sheets(α-βtransition)may lead to devastating neurodegenerative diseases,such as Parkinson's syndrome and Alzheimer's disease.Ionic liquids(ILs)are potential drugs for targeted therapies against these diseases because of their excellent bioactivity and designability of ILs.However,the mechanism through which ILs regulate the aα-βtransition remains unclear.Herein,a combination of GPU-accelerated microsecond molecular dynamics simulations,correlation analysis,and machine learning was used to probe the dynamicalα-βtransition process induced by ILs of 1-alkyl-3-methylimidazolium chloride([C_(n)mim]cl)and its molecular mechanism.Interestingly,the cation of [C_(n)mim]+in ILs can spontaneously insert into the peptides as free ions(n≤10)and clusters(n≥11).Such insertion can significantly inhibit theα-β,transition and the inhibiting ability for the clusters is more significant than that of free ions,where[Ciomim]+and[C_(12)mim]+can reduce the maximumβ-sheet content of the peptide by 18.5% and 44.9%,respectively.Furthermore,the correlation analysis and machine learning method were used to develop a predictive model accounting for the influencing factors on theα-βtransition,which could accurately predict the effect of ILs on theα-βtransition.Overall,these quantitative results may not only deepen the understanding of the role of ILs in theα-βtransition but also guide the development of the IL-based treatments for related diseases.
文摘Machining of micro holes with micro electro- chemical machining (micro ECM) process has been carried out with an indigenously developed set up. This paper describes relevant problems and solutions for the circular micro holes machining process on 304 stainless steel sheets with 60 μm thickness using high speed steel cylindrical tool of diameter 500 ~tm and using dilute I-I2SO4 as elec- trolyte. The taper angle variation of the machined hole is analyzed and reported for different experimental setting parameters. The minimum value of the taper angle of machined holes is achieved at the parameter setting of 0.4 mol/L H2504, 700 kHz, 600 ns and 21 V, for stainless steel sheets and HSS tool.
基金Supported by the National Basic Research Program of China(973 Program)(2014CB340600)the National High Technology Research and Development Program of China(863 Program)(2015AA016002)the National Natural Science Foundation of China(61173138,61272452,61332018)
文摘To prevent malicious virtual machine from harming the security of vTPM-VM live migration process, we propose an im- proved vTPM-VM live migration protocol which uses a TPM-based integrity verification policy and a specific encryption scheme to enhance security. The TPM-based integrity verification policy is presented to ensure that all participating entities in this process are trustworthy. In data transfer phase, the specific encryp- tion scheme is designed to associate the decipher process with one certain platform status so that only the destination platform can gain the key data of the migrated VM and vTPM instance. The security of this new protocol is analyzed. The results show that this protocol can effectively resist most of the attacks in the proc- ess ofvTPM-VM live migration.
文摘Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising application in this field. The outstanding properties lead to challenging machining processes. High strength and low heat conductivity affect high mechanical and thermal loads for the cutting edge. Thus, the machining process is characterized by a rapid development of tool wear even at low cutting parameter. To reach a sufficient productivity it is necessary to dissipate the resulting heat from the cutting edge by a coolant. Therefore the cryogenic machining of two different titanium alloys is investigated in this work. The results point out the different behavior of the machining processes under cryogenic conditions because of the reduced thermal load for the cutting tool. According to this investigation, the cryogenic cooling with COa enables an increase of the tool life in comparison to emulsion based cooling principles when machining the α+β-titanium alloy Ti-6Al-4V. The machining process of the high strength titanium alloy Ti-6Al-2Sn-4Zr-6Mo requires an additional lubrication realized by a minimum quantity lubrication (MQL) with oil. This combined cool- ing leads to a smoother chip underside and to slender shear bands between the different chip segments.