This paper introduces drift analysis approach in studying the convergence and hitting times of evolutionary algorithms. First the methodology of drift analysis is introduced, which links evolutionary algorithms with M...This paper introduces drift analysis approach in studying the convergence and hitting times of evolutionary algorithms. First the methodology of drift analysis is introduced, which links evolutionary algorithms with Markov chains or supermartingales. Then the drift conditions which guarantee the convergence of evolutionary algorithms are described. And next the drift conditions which are used to estimate the hitting times of evolutionary algorithms are presented. Finally an example is given to show how to analyse hitting times of EAs by drift analysis approach.展开更多
The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequen...The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.展开更多
基金Supported by Engineering and Physical Science Research Courcil(GR/R52541/01)and State Laboratory of Software Engineering at Wuhan University
文摘This paper introduces drift analysis approach in studying the convergence and hitting times of evolutionary algorithms. First the methodology of drift analysis is introduced, which links evolutionary algorithms with Markov chains or supermartingales. Then the drift conditions which guarantee the convergence of evolutionary algorithms are described. And next the drift conditions which are used to estimate the hitting times of evolutionary algorithms are presented. Finally an example is given to show how to analyse hitting times of EAs by drift analysis approach.
基金National Natural Science Foundation of China(61004081,11126033)School Advanced Research Foundation of National University of Defense Technology (JC11-02-22)
文摘The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.