期刊文献+
共找到117,216篇文章
< 1 2 250 >
每页显示 20 50 100
On the functions of astrocyte-mediated neuronal slow inward currents
1
作者 Balázs Pál 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2602-2612,共11页
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a... Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it. 展开更多
关键词 ASTROCYTE cortical spreading depolarization gliotransmission GLUTAMATE neural synchronization NMDA receptor paroxysmal depolarizational shift slow inward current
下载PDF
Observation of Arctic surface currents using data from a surface drifting buoy
2
作者 Hongxia Chen Lina Lin +7 位作者 Long Fan Wangxiao Yang Yinke Dou Bingrui Li Yan He Bin Kong Guangyu Zuo Na Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期70-79,共10页
During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which... During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km). 展开更多
关键词 Chinese National Arctic Research Expedition(CHINARE) surface drifting buoy transpolar drift Chukchi Slope current inertial flow
下载PDF
Experimental research on influence mechanism of loading rates on rock pressure stimulated currents 被引量:1
3
作者 Min Li Zhijun Lin +5 位作者 Shiliang Shi Deming Wang Yi Lu He Li Qing Ye Xiaonan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期243-250,共8页
The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under th... The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs. 展开更多
关键词 Pressure stimulated current Loading rate Influence mechanism Peak current
下载PDF
Responses of the field-aligned currents in the plasma sheet boundary layer to a geomagnetic storm 被引量:1
4
作者 YuanQiang Chen MingYu Wu +3 位作者 YangJun Chen SuDong Xiao GuoQiang Wang TieLong Zhang 《Earth and Planetary Physics》 CAS CSCD 2023年第5期558-564,共7页
Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetos... Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetosphere,and ionosphere,field-aligned currents(FACs)can also be strengthened in storm times.This study shows the responses of FACs in the plasma sheet boundary layer(PSBL)observed by the Magnetospheric Multiscale(MMS)spacecraft in different phases of a large storm that lasted from May 27,2017,to May 29,2017.Most of the FACs were carried by electrons,and several FACs in the storm time also contained sufficient ion FACs.The FAC magnitudes were larger in the storm than in the quiet period,and those in the main phase were the strongest.In this case,the direction of the FACs in the main phase showed no preference for tailward or earthward,whereas the direction of the FACs in the recovery phase was mostly tailward.The results suggest that the FACs in the PSBL are closely related to the storm and could be driven by activities in the tail region,where the energy transported from the solar wind to the magnetosphere is stored and released as the storm is evolving.Thus,the FACs are an important medium of energy transport between the tail and the ionosphere,and the PSBL is a significant magnetosphere–ionosphere coupling region in the nightside. 展开更多
关键词 field-aligned currents plasma sheet boundary layer geomagnetic storm
下载PDF
Vertical structure of tidal currents in the Xuliujing Section of Changjiang River Estuary
5
作者 Zhigao Chen Ya Ban +2 位作者 Xiaoye Chen Dajun Li Shengping Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第2期44-55,共12页
Three long-term fixed acoustic Doppler current profilers were first used for investigating the vertical structure of tidal currents in Xuliujing Section of Changjiang River Estuary.Moreover,three different periods(spr... Three long-term fixed acoustic Doppler current profilers were first used for investigating the vertical structure of tidal currents in Xuliujing Section of Changjiang River Estuary.Moreover,three different periods(spring,summer and fall)were also considered for investigating seasonal variations.The semi-diurnal tides were the most energetic,with along-channel speed of up to 80 cm/s for M_(2)constituent,which dominates at all stations with percent energy up to 65%–75%during seasons.The shape of tidal ellipses of the most energetic semi-diurnal constituent M_(2)showed obvious polarization of the flow paralleling to the riverbank,with the minor semi-axis being generally less than 20%of the major one.The maximum velocity of mean current is appeared in top layers at all the three stations,and the velocity decreased with the depth.The seasonal variations of direction are also observed,which is probably caused by complex local topography since the erosion and deposition in riverbed.Observed vertical variation of four parameters of M_(2)ellipses,agreed well with the optimally fit frictional solutions in top and middle layers.However,there was an obvious difference between frictional model and observed data in the lower water column.Discrepancies are probably on account of stratification,which strengthens in summer and fall due to the freshening influence of the Changjiang River Estuary outflow. 展开更多
关键词 vertical structure seasonal variations tidal current mean current acoustic Doppler current profiler Changjiang River Estuary
下载PDF
Rashba spin-orbit coupling induced rectified currents in monolayer graphene with exchange field and sublattice potential
6
作者 陈亮 李峰 丁晓明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期382-385,共4页
We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivitie... We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivities of resonant shift and injection current contributions are nonzero,while the photoconductivities of non-resonant shift current contribution are zero.We find that the RSOC induces a warping term,which leads to the nonzero rectified currents.Moreover,the photoconductivities of resonant injection(shift)current contribution are(not)related to the relaxation rate.The similar behavior can be found in other Dirac materials,and our findings provide a way to tune the nonlinear transport properties of Dirac materials. 展开更多
关键词 GRAPHENE spin orbit coupling shift current inject current
下载PDF
Nonlinear free vibration of piezoelectric semiconductor doubly-curved shells based on nonlinear drift-diffusion model
7
作者 Changsong ZHU Xueqian FANG Jinxi LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1761-1776,共16页
In this paper, the nonlinear free vibration behaviors of the piezoelectric semiconductor(PS) doubly-curved shell resting on the Pasternak foundation are studied within the framework of the nonlinear drift-diffusion(NL... In this paper, the nonlinear free vibration behaviors of the piezoelectric semiconductor(PS) doubly-curved shell resting on the Pasternak foundation are studied within the framework of the nonlinear drift-diffusion(NLDD) model and the first-order shear deformation theory. The nonlinear constitutive relations are presented, and the strain energy, kinetic energy, and virtual work of the PS doubly-curved shell are derived.Based on Hamilton's principle as well as the condition of charge continuity, the nonlinear governing equations are achieved, and then these equations are solved by means of an efficient iteration method. Several numerical examples are given to show the effect of the nonlinear drift current, elastic foundation parameters as well as geometric parameters on the nonlinear vibration frequency, and the damping characteristic of the PS doublycurved shell. The main innovations of the manuscript are that the difference between the linearized drift-diffusion(LDD) model and the NLDD model is revealed, and an effective method is proposed to select a proper initial electron concentration for the LDD model. 展开更多
关键词 nonlinear free vibration piezoelectric semiconductor(PS)doubly-curved shell nonlinear drift-diffusion(NLDD)model linearized drift-diffusion(LDD)model
下载PDF
Kuroshio Intrusion Combined with Coastal Currents Affects Phytoplankton in the Northern South China Sea Revealed by Lipid Biomarkers
8
作者 WANG Yaoyao BI Rong +5 位作者 GAO Jiawei ZHANG Hailong LI Li DING Yang JIN Gui’e ZHAO Meixun 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期576-586,共11页
The northern South China Sea(NSCS)is significantly influenced by the Kuroshio intrusion and the coastal currents.Our knowledge on the roles of both currents on phytoplankton spatial variations is still inadequate.Here... The northern South China Sea(NSCS)is significantly influenced by the Kuroshio intrusion and the coastal currents.Our knowledge on the roles of both currents on phytoplankton spatial variations is still inadequate.Here,we investigated the concentrations of phytoplankton biomarkers and their proportions in surface suspended particles from 47 sites of the NSCS during summer of 2017 and 2019.Brassicasterol/epi-brassicasterol,dinosterol,and C37 alkenones were used as proxies of biomass for diatoms,dinoflagellates,and haptophytes,respectively,and their sum indicating total phytoplankton biomass.A three end-member mixing model was applied to quantitatively assess the influence extent of the Kuroshio intrusion and the coastal currents.Our results showed that the Kuroshio intrusion and the coastal currents contributed equally to the overall surface water masses in the study area;however,the two currents had distinct effects on the spatial distribution of phytoplankton.For phytoplankton biomass,the eutrophic coastal currents were likely to be the main controlling factors,while the impact of the Kuroshio intrusion was weak and stimulated significant increases in phytoplankton biomass only at certain boundary sites.For phytoplankton community structures,the Kuroshio and its intrusion were the main factors,resulting in an increase in the proportions of dinoflagellates and haptophytes.The proportion of diatoms slightly increased due to the influence of the coastal currents.Our study quantifies the effects of the Kuroshio and the coastal currents on phytoplankton in the NSCS in terms of hydrological parameters,providing an important basis for the understanding of ecological functions and biogeochemical cycles in marginal sea-open ocean boundary regions. 展开更多
关键词 STEROLS alkenones PHYTOPLANKTON northern South China Sea KUROSHIO coastal currents
下载PDF
The failure propagation of weakly stable sediment:A reason for the formation of high-velocity turbidity currents in submarine canyons
9
作者 Yupeng REN Yi ZHANG +3 位作者 Guohui XU Xingbei XU Houjie WANG Zhiyuan CHEN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第1期100-117,共18页
The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains.Previous studies show obvious differences in the turbidity current velocities derived fr... The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains.Previous studies show obvious differences in the turbidity current velocities derived from the multiple cables damage events ranging from 5.9 to 28.0 m/s and those of field observations between 0.15 and 7.2 m/s.Therefore,questions remain regarding whether a turbid fluid in an undersea environment can flow through a submarine canyon for a long distance at a high speed.A new model based on weakly stable sediment is proposed(proposed failure propagation model for weakly stable sediments,WS S-PFP model for short)to explain the high-speed and long-range motion of turbidity currents in submarine canyons through the combination of laboratory tests and numerical analogs.The model is based on two mechanisms:1)the original turbidity current triggers the destabilization of the weakly stable sediment bed and promotes the destabilization and transport of the soft sediment in the downstream direction and 2)the excitation wave that forms when the original turbidity current moves into the canyon leads to the destabilization and transport of the weakly stable sediment in the downstream direction.The proposed model will provide dynamic process interpretation for the study of deep-sea deposition,pollutant transport,and optical cable damage. 展开更多
关键词 turbidity current excitation wave dense basal layer velocity WSS-PFP model
下载PDF
AUV-Aided Data Collection Considering Adaptive Ocean Currents for Underwater Wireless Sensor Networks
10
作者 Yunyun Li Yanjing Sun +1 位作者 Qingyan Ren Song Li 《China Communications》 SCIE CSCD 2023年第4期356-367,共12页
Autonomous underwater vehicle(AUV)-assisted data collection is an efficient approach to implementing smart ocean.However,the data collection in time-varying ocean currents is plagued by two critical issues:AUV yaw and... Autonomous underwater vehicle(AUV)-assisted data collection is an efficient approach to implementing smart ocean.However,the data collection in time-varying ocean currents is plagued by two critical issues:AUV yaw and sensor node movement.We propose an adaptive AUV-assisted data collection strategy for ocean currents to address these issues.First,we consider the energy consumption of an AUV in conjunction with the value of information(VoI)over the sensor nodes and formulate an optimization problem to maximize the VoI-energy ratio.The AUV yaw problem is then solved by deriving the AUV's reachable region in different ocean current environments and the optimal cruising direction to the target nodes.Finally,using the predicted VoI-energy ratio,we sequentially design a distributed path planning algorithm to select the next target node for AUV.The simulation results indicate that the proposed strategy can utilize ocean currents to aid AUV navigation,thereby reducing the AUV's energy consumption and ensuring timely data collection. 展开更多
关键词 underwater sensor networks data collection ocean currents value of information energy consumption
下载PDF
An Innovative Approach to Predicting Scour Depth Around Foundations Under Combined Waves and Currents in Large-Scale Tests Based on Small-Scale Tests
11
作者 HU Ruigeng LIU Hongjun +2 位作者 LU Yao WANG Xiuhai SHI Wei 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期637-648,共12页
This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present app... This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present approach,the hydrodynamic parameters were designed based on the Froude similitude criteria.To avoid the cohesive behavior,we scaled the sediment size based on the settling velocity similarity,i.e.,the suspended load similarity.Then,a series of different scale model tests was conducted to obtain the scour depth around the pile in combined waves and currents.The fitting formula of scour depth from the small-scale model tests was used to predict the results of large-scale tests.The accuracy of the present approach was validated by comparing the prediction values with experimental data of large-scale tests.Moreover,the correctness and accuracy of the present approach for foundations with complex shapes,e.g.,the tripod foundation,was further checked.The results indicated that the fitting line from small-scale model tests slightly overestimated the experimental data of large-scale model tests,and the errors can be accepted.In general,the present approach was applied to predict the maximum or equilibrium scour depth of the large-scale model tests around single piles and tripods. 展开更多
关键词 SCOUR scour depth prediction Froude similarity scale effects combined waves and currents
下载PDF
Research on the Dynamic Response of Submerged Floating Tunnels to Wave Currents and Traffic Load
12
作者 Bolin Jiang Shanshan Wu +1 位作者 Min Ji Bo Liang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期159-173,共15页
Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element me... Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element method able to account for fluid-structure interaction.The obtained results show that increasing the number of vehicles per unit length enhances the transverse vibrational displacements of the SFT cross sections.Under ultimate traffic load condition,one-way and two-way syntropic distributions can promote the dynamic responses of SFTs whereas two-way reverse distributions have the opposite effect. 展开更多
关键词 Submerged floating tunnel vehicle load dynamic response wave and current loads fluid-structure interaction
下载PDF
Suppression of transmembrane sodium currents on the freshly isolated hippocampal neuron cell with continuous infrared light
13
作者 Fanyi Kong Xinyu Li +4 位作者 Ruonan Jiao Kun Liu Xue Han Changkai Sun Changsen Sun 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS CSCD 2023年第2期16-27,共12页
Physiotherapeutic effects of infrared lasers have been proved in clinic.These infrared-based regulations of the bioelectrical activities can roughly be classied into enhancement and suppression of action potential(AP)... Physiotherapeutic effects of infrared lasers have been proved in clinic.These infrared-based regulations of the bioelectrical activities can roughly be classied into enhancement and suppression of action potential(AP),which are described by sodium(Na)and potassium(K)transmembrane current equations,named as Hodgkin and Huxley(HH)-model.The enhancement effect is able to evoke or strengthen the AP when infrared light is applied.Its corresponding mechanism is commonly ascribed to the changes of the cell membrane capacitance,which is transiently increased in response to the infrared radiation.The distinctive feature of the suppression effect is to inhibit or reduce the AP by the designed protocols of infrared radiation.However,its mechanism presents more complexity than that in enhancement cases.HH-model describes how the Na current determines the initial phase of AP.So,the enhancement and suppression of AP can be also ascribed to the regulations of the corresponding Na currents.Here,a continuous infrared light at the wavelength of 980 nm(CIS-980)was employed to stimulate a freshly isolated hippocampal neuron in vitro and a suppression effect on the Na currents of the neuron cell was observed.Both Na and K currents,which are named as whole cell currents,were simultaneously recorded with the cell membrane capacitance current by using a patch clamp combined with infrared irradiation.The results demonstrated that the CIS-980 was able to reversibly increase the capacitance currents,completely suppressed Na currents,but little changed K currents,which forms the steady outward whole cell currents and plays a major role on the AP repolarization.A conrmation experiment was designed and carried out by synchronizing tens of milliseconds of infrared stimulation on the same kinds of hippocampal neuron cells.After the blocked K channel,a reduction of Na current amplitude was still recorded.This proved that infrared suppression of Na current was irrelevant to K channel.A membrane capacitance mediation process was preliminarily proposed to explain the Na channel suppression process. 展开更多
关键词 Na channel suppression AP whole cell currents infrared suppression of bioelectrical activity photothermal effect on the membrane capacitance continuous infrared laser physiotherapy
下载PDF
Double-ring high-frequency common-mode switching oscillation current sensor for inverter-fed machine winding insulation monitoring
14
作者 Lingqing Pan Xizhou Du +3 位作者 Xing Lei Ting Ye Dawei Xiang Hao Li 《Global Energy Interconnection》 EI CSCD 2024年第1期106-116,共11页
Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offe... Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offers a non-intrusive and highly sensitive alternative.However,the detection of HF CM currents is susceptible to interference from differential-mode(DM)currents,which exhibit high-amplitude and multifrequency components during normal operation.To address this challenge,this paper proposes a double-ring current sensor based on the principle of magnetic shielding for inverter-fed machine winding insulation monitoring.The inner ring harnesses the magnetic aggregation effect to isolate the DM current magnetic field,whereas the outer ring serves as the magnetic core of the Rogowski current sensor,enabling HF CM current monitoring.First,the magnetic field distributions of the CM and DM currents were analyzed.Then,a correlation between the sensor parameters and signal-to-noise ratio of the target HF CM current was established.Finally,an experimental study was conducted on a 3-kW PMSM for verification.The results indicate that the proposed double-ring HF CM sensor can effectively mitigate DM current interference.Compared to a single-ring sensor,a reduction of approximately 40%in the DM component was achieved,which significantly enhanced the precision of online insulation monitoring. 展开更多
关键词 Magnetic shielding Double-ring Common-mode current Maxwell simulation
下载PDF
Numerical analysis for the free-boundary current reversal equilibrium in the AC plasma current operation in a tokamak
15
作者 胡业民 王柳青 +2 位作者 白书航 于治 夏天阳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期22-30,共9页
In recent decades, tokamak discharges with zero total toroidal current have been reported in tokamak experiments, and this is one of the key problems in alternating current(AC) operations.An efficient free-boundary eq... In recent decades, tokamak discharges with zero total toroidal current have been reported in tokamak experiments, and this is one of the key problems in alternating current(AC) operations.An efficient free-boundary equilibrium code is developed to investigate such advanced tokamak discharges with current reversal equilibrium configuration. The calculation results show that the reversal current equilibrium can maintain finite pressure and also has considerable effects on the position of the X-point and the magnetic separatrix shape, and hence also on the position of the strike point on the divertor plates, which is extremely useful for magnetic design, MHD stability analysis, and experimental data analysis etc. for the AC plasma current operation on tokamaks. 展开更多
关键词 current reversal equilibrium AC operation free-boundary equilibrium TOKAMAK
下载PDF
Ionospheric Currents in the Equatorial and Low Latitudes of Africa
16
作者 G.C Emenike T.N Obiekezie V.N Ojeh 《Journal of Atmospheric Science Research》 2023年第1期68-74,共7页
The magnetometer data obtained for 2008 from geomagnetic stations installed across Africa by magnetic data acquisition set (MAGDAS) have been used to study the ionospheric Sq current system in the equatorial and low-l... The magnetometer data obtained for 2008 from geomagnetic stations installed across Africa by magnetic data acquisition set (MAGDAS) have been used to study the ionospheric Sq current system in the equatorial and low-latitudes of Africa. The aim of this work is to separate the quiet-day field variations obtained in the equatorial and low latitude regions of Africa into their external and internal field contributions and then to use the paired external and internal coefficients of the SHA to determine the source current and induced currents. The method used involved a spherical harmonic analysis (SHA). This was applied in the separation of the internal and external field/current contribution to the Sq variations. The result shows that the variation in the currents is seen to be a dawn-to-dusk phenomenon with the variation in the external currents different from that of the internal currents both in amplitude and in phase. Furthermore, the seasonal variation in the external current maximizes during the March equinox and minimizes during the December solstice. The maximum current observed in AAB and ILR is due to the Equatorial Electrojet Current present in the AAB and ILR stations. Seasonal variation was observed in the geomagnetic component variations as well as in the currents. This is attributed to the position of the sun with respect to the earth at different months of the year. The equinoctial maximum is observed in external current intensity which occurred mostly during the March Equinox. 展开更多
关键词 EQUATORIAL Low latitudes AFRICA Ionospheric Sq currents
下载PDF
Analysis of Sea Surface Temperature Cooling in Typhoon Events Passing the Kuroshio Current
17
作者 HU Yuyi SHAO Weizeng +3 位作者 SHEN Wei ZUO Juncheng JIANG Tao HU Song 《Journal of Ocean University of China》 CAS CSCD 2024年第2期287-303,共17页
The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to s... The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to simulate the SST,which includes four wave-induced effect terms(i.e.,radiation stress,nonbreaking waves,Stokes drift,and breaking waves) simulated using the third-generation wave model,called WAVEWATCH-Ⅲ(WW3).The significant wave height(SWH) measurements from the Jason-2 altimeter were used to validate the WW3-simulated results,yielding a root mean square error(RMSE) of less than 0.50 m and a correlation coefficient(COR) of approximately 0.93.The water temperature measured from the Advanced Research and Global Observation Satellite was applied to validate the model simulation.Accordingly,the RMSE of the SST is 0.92℃ with a COR of approximately 0.99.As revealed in the sbPOM-simulated SST fields,a reduction in the SST at the Kuroshio Current region was observed as a typhoon passed,although the water temperature of the Kuroshio Current is relatively high.The variation of the SST is consistent with that of the current,whereas the maximum SST lagged behind the occurrence of the peak SWH.Moreover,the Stokes drift plays an important role in the SST cooling after analyzing four wave-induced terms in the background of the Kuroshio Current.The sensitivity experiment also showed that the accuracy of the water temperature was significantly reduced when including breaking waves,which play a negative role in the inside part of the ocean.The variation in the mean mixing layer depth(MLD) showed that a typhoon could enhance the mean MLD in the Kuroshio Current area in September and October,whereas a typhoon has little influence on the mean MLD in the Kuroshio Current area in May.Moreover,the mean MLD rapidly decreased with the weakening of the strong wind force and wave-induced effects when a typhoon crossed the Kuroshio Current. 展开更多
关键词 typhoon wave sea surface temperature Kuroshio current
下载PDF
Influence of Current Density on the Photocatalytic Activity of Nd:TiO_(2) Coatings
18
作者 施渊吉 ZHANG Zhen +2 位作者 DAI Yunzhong LI Jingxiao CHEN Zeyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期32-38,共7页
The Nd:TiO_(2 )PEO coatings were formed in a phosphate-based electrolyte with the addition of Nd_(2)O_(3 )under the current density of 150,200,250 and 300 m A/cm^(2).SEM results showed that the micropores decreased on... The Nd:TiO_(2 )PEO coatings were formed in a phosphate-based electrolyte with the addition of Nd_(2)O_(3 )under the current density of 150,200,250 and 300 m A/cm^(2).SEM results showed that the micropores decreased on quantity and increased on scale with the increasing current density.AFM results revealed that the roughness of the coatings increased with the increasing current density.Phase and composition analysis showed that the Nd:TiO_(2) coatings were mainly composed of anatase and rutile phase.And the anatase phase content has reached the maximum value at the current density of 250 m A/cm^(2).XPS results indicated that Ti2p spin-orbit components of the Nd:TiO_(2) coatings are shifted towards higher binding energy,compared with the pure TiO_(2) coating,suggesting that some of the Nd^(3+)ions are combined with TiO_(2) lattice and led to dislocation.Photocatalytic test showed that the photocatalytic activity of Nd:TiO_(2) coatings varied in the same pattern with the anatase content variation in Nd:TiO_(2) coatings.The photocatalytic experiment results show that the photocatalytic activity of Nd:TiO_(2) coatings can be greatly enhanced with moderate amount of Nd^(3+).However,excessive amount of Nd^(3+)does not have an effective impact on the photoctalytic activity improvement. 展开更多
关键词 PEO current density AFM XPS Nd:TiO_(2) PHOTOCATALYTIC
下载PDF
Pressure stimulated current in progressive failure process of combined coal-rock under uniaxial compression:Response and mechanism
19
作者 Tiancheng Shan Zhonghui Li +7 位作者 Xin Zhang Haishan Jia Xiaoran Wang Enyuan Wang Yue Niu Dong Chen Weichen Sun Dongming Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期227-243,共17页
Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun... Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment. 展开更多
关键词 Combined coal-rock Pressure stimulated current Progressive failure process MECHANISM Flow model
下载PDF
Revisiting aluminum current collector in lithium-ion batteries:Corrosion and countermeasures
20
作者 Shanglin Yang Jinyan Zhong +1 位作者 Songmei Li Bin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期610-634,I0014,共26页
With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary m... With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary materials,such as current collector corrosion,should not be disregarded.Therefore,it is necessary to conduct a comprehensive review in this field.In this review,from the perspectives of electrochemistry and materials,we systematically summarize the corrosion behavior of aluminum cathode current collector and propose corresponding countermeasures.Firstly,the corrosion type is clarified based on the properties of passivation layers in different organic electrolyte components.Furthermore,a thoroughgoing analysis is presented to examine the impact of various factors on aluminum corrosion,including lithium salts,organic solvents,water impurities,and operating conditions.Subsequently,strategies for electrolyte and protection layer employed to suppress corrosion are discussed in detail.Lastly and most importantly,we provide insights and recommendations to prevent corrosion of current collectors,facilitate the development of advanced current collectors and the implementation of next-generation high-voltage stable LIBs. 展开更多
关键词 Lithium-ion battery Aluminum current collector CORROSION Electrochemical performance ELECTROLYTE Protective layer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部