An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was develo...An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was developed in the order of basic in-spection followed by targeted QC.The innovative method of combining a moving Hampel filter and local anomaly detection com-plies with statistical laws and physical processes,which guarantees the QC performance of meteorological variables.Two sets of observation data were used to verify the applicability and effectiveness of the QC procedure,and the effect was evaluated using the observations of the Kuroshio Extension Observatory buoy as the reference.The results showed that the outliers in the time series can be correctly identified and processed,and the quality of data improved significantly.The linear correlation between the quality-controlled observations and the reference increased,and the difference decreased.The correlation coefficient of wind speed before and after QC increased from 0.77 to 0.82,and the maximum absolute error decreased by approximately 2.8ms^(-1).In addition,air pressure and relative humidity were optimized by 10^(-3)–10^(-2) orders of magnitude.For the sea surface temperature,the weight of coefficients of the continuity test algorithm was optimized based on the sea area of data acquisition,which effectively expanded the applicability of the algorithm.展开更多
During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which...During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).展开更多
Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by esta...Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.展开更多
The abnormal increase of drifting brown alga Sargassum horneri was initially documented in 2007.It formed blooms along the coast of East China Sea and Yellow Sea in 2017.In this study,we investigated the changes of sp...The abnormal increase of drifting brown alga Sargassum horneri was initially documented in 2007.It formed blooms along the coast of East China Sea and Yellow Sea in 2017.In this study,we investigated the changes of specific growth rate and resource accumulation of drifting S.horneri in response to temperature and nitrogen richness at different growth stages under laboratory condition.The investigation lasted from June 2015 to April 2016 with the observation made every two months.The results showed that the life cycle consists of a few growth stages dividable with morphological characteristics.The growth can be divided into shedding and withering(August),rapid growing(October to September),slow growing(February),rapid growing(April)and maturation(June)stages.Under the experimental condition,algal segments were found to grow at temperatures ranging from 5 to 25℃in 12 days even when nitrogen is deficient.A significant difference in the special growth rate(SGR)between nitrogen-enriched and nitrogen-removed treatments was found in most months(P<0.05).SGR was lower in August and February than that in other months.Nitrogen and chlorophyll contents in algal segments were different among different temperatures,nitrogen supply and seasons.Nitrogen content was higher in February and April than that in other months in both nitrogen-enriched and nitrogen-removed treatments.The results showed that the demand of S.horneri for nitrogen increased in spring when it grows fast.It is likely that the high temperature and nitrogen concentration in winter and spring lead to the high biomass accumulation of drifting S.horneri.展开更多
Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According t...Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According to the distinct differences in monthly mean ice velocity field as well as in the distribution of SLP, there are four primary types in the Arctic Ocean: Beaufort Gyre+Transpolar Drift, Anticyclonic Drift, Cyclonic Drift and Double Gyre Drift. These four types account for 81% of the total, and reveal distinct seasonal variations. The Cyclonic Drift with a large-scale anticlockwise ice motion pattern trends to prevail in summer while the Anticyclonic Drift with an opposite pattern trends to prevail in winter and spring. The prevailing seasons for the Beaufort Gyre+Transpolar Drift are spring and autumn, while the Double Gyre Drift trends to prevail in winter, especially in Feb- ruary. The annual occurring times of the Anticyclonic Drift and the Cyclonic Drift are closely correlated with the yearly mean Arc- tic Oscillation (AO) index, with a correlation coefficient of -0.54 and 0.54 (both significant with the confident level of 99%), re- spectively. When the AO index stays in a high positive (negative) condition, the sea-ice motion in the Arctic Ocean demonstrates a more anticlockwise (clockwise) drifting pattern as a whole. When the AO index stays in a neutral condition, the sea-ice motion becomes much more complicated and more transitional types trend to take place.展开更多
Presents a continuous inertial platform drifting test process to simplify the operation of experiment and eliminate the difficulty of Kalman filter’s parameter setting up with the previous discrete multi position tes...Presents a continuous inertial platform drifting test process to simplify the operation of experiment and eliminate the difficulty of Kalman filter’s parameter setting up with the previous discrete multi position testing scheme,and improve the estimation accuracy for each error parameter.展开更多
A dataset of drifting buoys from the Marine Environmental Data Service of Canada was analyzed to map surface circulation of the Pacific. More information of the surface circulation than that acquired before was report...A dataset of drifting buoys from the Marine Environmental Data Service of Canada was analyzed to map surface circulation of the Pacific. More information of the surface circulation than that acquired before was reported in this paper, showing clear and strong western boundary currents, equato- rial currents, and subtropical gyres in the North and South Pacific regions in velocity field, with a more systematic structure in the North Pacific.展开更多
With the insight of memristor researsh growing continuously,many semiconductor material has been manufactured to various kinds of memristive device.Yet the stabilization of memristive performance haven’t been fulfill...With the insight of memristor researsh growing continuously,many semiconductor material has been manufactured to various kinds of memristive device.Yet the stabilization of memristive performance haven’t been fulfilled,the fathom of memristive-acting mechanism still not being generalized.To put a futher move on low-consuming and high-stable memristive conductance device,we built a high stable double-pair-electrode device,based on the fabrication of TiO_(2-x),which has been generally applied as a n-type semiconductor.Under the constant-repeating cyclic voltammerty;we nailed the memristive quality of our mental/semiconductor thin film device.Moreover,through multifarious analytical processes based on our doping,filming growing path,we build a rational model for our memristor‘s memristive conductance mechanism,which indicated the carrier motion and electron tunnel following the biasing voltage.Our work exhibited a new type of TiO_(2-x)-based memristor,and emerged a new way to explicate the single-stage-switching memristive feature,which might initiate a new guiding ideology in semiconductor memristor’s studying.展开更多
The mechanism of axial drifting of weldment on welding turning rolls was investigated. The simulation test for influential element has been carried out as well. The results show that axial drifting is caused by unpara...The mechanism of axial drifting of weldment on welding turning rolls was investigated. The simulation test for influential element has been carried out as well. The results show that axial drifting is caused by unparallel between the axis of roller and weldment resulting in axial force. When the helical angle λ between rolls and weldment is from 1°to 6°, the tanλ is linearly related to axial drifting speed v. Increase of number of deflected rollers causes non linear increase of v. The angle of λ makes more effect on speed v than what the angle of deflection does. The turning speed of weldment is proportion to axial drifting speed v. The dead weight of weldment has little effect on speed v.展开更多
It is unknown if resting sharks can sleep, which is also true for gliding ones. Here, a videotaped bull shark is presented that drifted in an uncontrolled manner for 120 seconds while sinking with 0.1 m/second. Severa...It is unknown if resting sharks can sleep, which is also true for gliding ones. Here, a videotaped bull shark is presented that drifted in an uncontrolled manner for 120 seconds while sinking with 0.1 m/second. Several aspects are discussed to determine if the shown behavior reflects the commonly accepted definition of sleep. Additionally, the idea is also discussed if this state might reflect a “quiet waking state” instead of where the shark still maintained some vigilance despite its general appearance.展开更多
We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the elect...We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency pe, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.展开更多
1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial p...1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial potash展开更多
The vertical distribution of morphologically different drifting invertebrates (mayfly and dipteran larvae) in a small salmon river was studied. Drifting invertebrates were caught with the Astakhov’s sampler equipped ...The vertical distribution of morphologically different drifting invertebrates (mayfly and dipteran larvae) in a small salmon river was studied. Drifting invertebrates were caught with the Astakhov’s sampler equipped with three driftnets placed one above another. The average annual drift rate in different levels of a water column was practically the same, while the drift density decreased from the bottom to the surface. Over the course of 24 hours, the drifting organisms did not show clear preference for a particular water layer. Invertebrates were constantly redistributed between the upper and lower levels at approximately 30 - 90 min intervals. This redistribution appears to be linked to the fact that invertebrates of the same taxa, which entered into water column from different bottom sites become active at different times.展开更多
There is a huge demand to develop a method for marine search and rescue(SAR) operators automatically predicting the most probable searching area of the drifting object. This paper presents a novel drifting predictio...There is a huge demand to develop a method for marine search and rescue(SAR) operators automatically predicting the most probable searching area of the drifting object. This paper presents a novel drifting prediction model to improve the accuracy of the drifting trajectory computation of the sea-surface objects. First, a new drifting kinetic model based on the geometry characteristics of the objects is proposed that involves the effects of the object shape and stochastic motion features in addition to the traditional factors of wind and currents. Then, a computer simulation-based method is employed to analyze the stochastic motion features of the drifting objects, which is applied to estimate the uncertainty parameters of the stochastic factors of the drifting objects. Finally, the accuracy of the model is evaluated by comparison with the flume experimental results. It is shown that the proposed method can be used for various shape objects in the drifting trajectory prediction and the maritime search and rescue decision-making system.展开更多
Estimates of the surface heat budget over drifting ice and open water in the Arctic Ocean are made using eddy correlation and flux-profile methods using data obtained from drifting ice and from the R/V Xuelong in the ...Estimates of the surface heat budget over drifting ice and open water in the Arctic Ocean are made using eddy correlation and flux-profile methods using data obtained from drifting ice and from the R/V Xuelong in the Chinese National Arctic Research Expedition during August 19—24,1999. The results show that the net radiation received by the ice surface is mainly lost through the sensible heat flux and the heat flux due to melting ice, and the latent heat flux making small contribution to the heat balance. However, the heat balance of the open water surface was dominated by the radiative flux whereas the latent and sensible heat fluxes and the oceanic heat flux were greater than those on the sea-ice surface. These results emphasize that thermodynamic processes are quite different between air/open water and air/sea-ice over the Arctic Ocean which is important when considering the effect of sea-air-ice interaction on climate change process dur-ing the summer period.展开更多
The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of M...The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of MnFe-based catalysts were studied.The results indicate Sm-modified catalyst have superior low-temperature SCR activity;NO_(x) conversion maintained at nearby to 100%at 90℃ to 240℃.In addition,The N_(2) selectivity of Sm doping remains above 80%in the range of 60℃ to 150℃.In SO_(2) poisoning test,the NO_(x) conversion can be remained>90%after 10 h of reaction.The XPS,NH_(3)-TPD and H_(2)-TPR results show the catalyst with Sm doping enhances the acid sites and oxidation catalytic sites of mixed oxides serves for improving oxygen vacancies and transfer electrons.In situ diffuse reflaxions infrared Fourier transformations spectroscopy(DRIFTS)results show that NO_(x) is more easily adsorbed on the surface after Sm doping,which provided favorable conditions for the NH_(3)-SCR reaction to proceed.The reaction at the catalyst surface will follow the L-H reaction mechanism by transient reaction test.展开更多
The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated...The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated by using a coupled wave-current model.The role of SDP in turbulent mixing and the further dynamics during the entire typhoon period are comprehensively stud-ied.Experimental results show that SDP greatly increases turbulent mixing at all depths under typhoon conditions by up to seven times that under normal weather conditions.SDP generally strengthens sea surface cooling by more than 0.4℃,with the maximum reduction in sea surface temperature(SST)at the during-typhoon stage exceeding 2℃,which is approximately seven times larger than that under normal weather conditions.The SDP-induced decrease in current speed can exceed 0.2ms^(-1),and the change in current direction is generally opposite the wind direction.These results suggest that Stokes drift depresses the effect of strong winds on currents by intensifying turbulent mixing.Mixed layer depth(MLD)is distinctly increased by O(1)during typhoons due to SDP and can deepen by more than 5m.In addition,the continuous effects of SDP on SST,current,and MLD at the after-typhoon stage indi-cate a hysteretic response between SDP and typhoon actions.展开更多
Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for Mediu...Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.展开更多
Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants a...Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application.展开更多
Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board f...Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering.展开更多
基金supported by the Natural Resources Development Special Fund Project of Jiangsu Province(No.JSZRHYKJ202009)the Taishan Scholar Funds(No.tsqn 201812022)+2 种基金the Fundamental Research Funds for the Central Universities(No.202072001)the Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf,Beibu Gulf University(No.2021KF03)the National Natural Science Foundation of China(No.42176020).
文摘An integral quality control(QC)procedure that integrates various QC methods and considers the design indexes and operational status of the instruments for the observations of drifting air-sea interface buoy was developed in the order of basic in-spection followed by targeted QC.The innovative method of combining a moving Hampel filter and local anomaly detection com-plies with statistical laws and physical processes,which guarantees the QC performance of meteorological variables.Two sets of observation data were used to verify the applicability and effectiveness of the QC procedure,and the effect was evaluated using the observations of the Kuroshio Extension Observatory buoy as the reference.The results showed that the outliers in the time series can be correctly identified and processed,and the quality of data improved significantly.The linear correlation between the quality-controlled observations and the reference increased,and the difference decreased.The correlation coefficient of wind speed before and after QC increased from 0.77 to 0.82,and the maximum absolute error decreased by approximately 2.8ms^(-1).In addition,air pressure and relative humidity were optimized by 10^(-3)–10^(-2) orders of magnitude.For the sea surface temperature,the weight of coefficients of the continuity test algorithm was optimized based on the sea area of data acquisition,which effectively expanded the applicability of the algorithm.
基金The Fundamental Research Fund Project of the First Institute of OceanographyMinistry of Natural Resources+1 种基金under contract No.GY022Y07the National Natural Science Foundation of China under contract No.42106232。
文摘During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0405401)the National Science&Technology Pillar Program(Grant No.2012BAB03B01)+1 种基金the Fundamental Research Funds for the Central Universities,Hohai University(Grant No.2014B30914)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012411)
文摘Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.
基金supported by the Public Science and Technology Research Funds of Ocean from State Oceanic Administration, People’s Republic of China (Nos. 200905 0202, 201405040-4)
文摘The abnormal increase of drifting brown alga Sargassum horneri was initially documented in 2007.It formed blooms along the coast of East China Sea and Yellow Sea in 2017.In this study,we investigated the changes of specific growth rate and resource accumulation of drifting S.horneri in response to temperature and nitrogen richness at different growth stages under laboratory condition.The investigation lasted from June 2015 to April 2016 with the observation made every two months.The results showed that the life cycle consists of a few growth stages dividable with morphological characteristics.The growth can be divided into shedding and withering(August),rapid growing(October to September),slow growing(February),rapid growing(April)and maturation(June)stages.Under the experimental condition,algal segments were found to grow at temperatures ranging from 5 to 25℃in 12 days even when nitrogen is deficient.A significant difference in the special growth rate(SGR)between nitrogen-enriched and nitrogen-removed treatments was found in most months(P<0.05).SGR was lower in August and February than that in other months.Nitrogen and chlorophyll contents in algal segments were different among different temperatures,nitrogen supply and seasons.Nitrogen content was higher in February and April than that in other months in both nitrogen-enriched and nitrogen-removed treatments.The results showed that the demand of S.horneri for nitrogen increased in spring when it grows fast.It is likely that the high temperature and nitrogen concentration in winter and spring lead to the high biomass accumulation of drifting S.horneri.
基金the National Natural Science Foundation of China (Grant no. 40631006)the National Major Science Project of China for Global Change Research (Grant no. 2010CB951403)
文摘Abstract Monthly mean sea ice motion vectors and monthly mean sea level pressure (SLP) for the period of 1979-2006 are investigated to understand the spatial and temporal changes of Arctic sea-ice drift. According to the distinct differences in monthly mean ice velocity field as well as in the distribution of SLP, there are four primary types in the Arctic Ocean: Beaufort Gyre+Transpolar Drift, Anticyclonic Drift, Cyclonic Drift and Double Gyre Drift. These four types account for 81% of the total, and reveal distinct seasonal variations. The Cyclonic Drift with a large-scale anticlockwise ice motion pattern trends to prevail in summer while the Anticyclonic Drift with an opposite pattern trends to prevail in winter and spring. The prevailing seasons for the Beaufort Gyre+Transpolar Drift are spring and autumn, while the Double Gyre Drift trends to prevail in winter, especially in Feb- ruary. The annual occurring times of the Anticyclonic Drift and the Cyclonic Drift are closely correlated with the yearly mean Arc- tic Oscillation (AO) index, with a correlation coefficient of -0.54 and 0.54 (both significant with the confident level of 99%), re- spectively. When the AO index stays in a high positive (negative) condition, the sea-ice motion in the Arctic Ocean demonstrates a more anticlockwise (clockwise) drifting pattern as a whole. When the AO index stays in a neutral condition, the sea-ice motion becomes much more complicated and more transitional types trend to take place.
文摘Presents a continuous inertial platform drifting test process to simplify the operation of experiment and eliminate the difficulty of Kalman filter’s parameter setting up with the previous discrete multi position testing scheme,and improve the estimation accuracy for each error parameter.
基金Supported by the NSFC (Key Program, No. 90411013)
文摘A dataset of drifting buoys from the Marine Environmental Data Service of Canada was analyzed to map surface circulation of the Pacific. More information of the surface circulation than that acquired before was reported in this paper, showing clear and strong western boundary currents, equato- rial currents, and subtropical gyres in the North and South Pacific regions in velocity field, with a more systematic structure in the North Pacific.
文摘With the insight of memristor researsh growing continuously,many semiconductor material has been manufactured to various kinds of memristive device.Yet the stabilization of memristive performance haven’t been fulfilled,the fathom of memristive-acting mechanism still not being generalized.To put a futher move on low-consuming and high-stable memristive conductance device,we built a high stable double-pair-electrode device,based on the fabrication of TiO_(2-x),which has been generally applied as a n-type semiconductor.Under the constant-repeating cyclic voltammerty;we nailed the memristive quality of our mental/semiconductor thin film device.Moreover,through multifarious analytical processes based on our doping,filming growing path,we build a rational model for our memristor‘s memristive conductance mechanism,which indicated the carrier motion and electron tunnel following the biasing voltage.Our work exhibited a new type of TiO_(2-x)-based memristor,and emerged a new way to explicate the single-stage-switching memristive feature,which might initiate a new guiding ideology in semiconductor memristor’s studying.
文摘The mechanism of axial drifting of weldment on welding turning rolls was investigated. The simulation test for influential element has been carried out as well. The results show that axial drifting is caused by unparallel between the axis of roller and weldment resulting in axial force. When the helical angle λ between rolls and weldment is from 1°to 6°, the tanλ is linearly related to axial drifting speed v. Increase of number of deflected rollers causes non linear increase of v. The angle of λ makes more effect on speed v than what the angle of deflection does. The turning speed of weldment is proportion to axial drifting speed v. The dead weight of weldment has little effect on speed v.
文摘It is unknown if resting sharks can sleep, which is also true for gliding ones. Here, a videotaped bull shark is presented that drifted in an uncontrolled manner for 120 seconds while sinking with 0.1 m/second. Several aspects are discussed to determine if the shown behavior reflects the commonly accepted definition of sleep. Additionally, the idea is also discussed if this state might reflect a “quiet waking state” instead of where the shark still maintained some vigilance despite its general appearance.
基金Supported by the Yarmouk Universitythe KUSTAR–KAIST Institution Fund
文摘We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency pe, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.
基金supported by the (973) National Basic Research Program of China (2011CB403006)
文摘1 Introduction Most of the world well know potash mines are deposited in marine environment.Regarding the serious potash shortage,no significant progress has been made in marine potash in China,while the terrestrial potash
文摘The vertical distribution of morphologically different drifting invertebrates (mayfly and dipteran larvae) in a small salmon river was studied. Drifting invertebrates were caught with the Astakhov’s sampler equipped with three driftnets placed one above another. The average annual drift rate in different levels of a water column was practically the same, while the drift density decreased from the bottom to the surface. Over the course of 24 hours, the drifting organisms did not show clear preference for a particular water layer. Invertebrates were constantly redistributed between the upper and lower levels at approximately 30 - 90 min intervals. This redistribution appears to be linked to the fact that invertebrates of the same taxa, which entered into water column from different bottom sites become active at different times.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.31100672,51379121 and 61304230)the Shanghai Key Technology Plan Project(Grant Nos.12510501800,13510501600)
文摘There is a huge demand to develop a method for marine search and rescue(SAR) operators automatically predicting the most probable searching area of the drifting object. This paper presents a novel drifting prediction model to improve the accuracy of the drifting trajectory computation of the sea-surface objects. First, a new drifting kinetic model based on the geometry characteristics of the objects is proposed that involves the effects of the object shape and stochastic motion features in addition to the traditional factors of wind and currents. Then, a computer simulation-based method is employed to analyze the stochastic motion features of the drifting objects, which is applied to estimate the uncertainty parameters of the stochastic factors of the drifting objects. Finally, the accuracy of the model is evaluated by comparison with the flume experimental results. It is shown that the proposed method can be used for various shape objects in the drifting trajectory prediction and the maritime search and rescue decision-making system.
基金This study was supported primarily by grants of Chinese National Arctic Scientific Program and IARC/Frontier Fairbanks +1 种基金USA and the National Natural Science Foundation of China (Grant No. 49975006)
文摘Estimates of the surface heat budget over drifting ice and open water in the Arctic Ocean are made using eddy correlation and flux-profile methods using data obtained from drifting ice and from the R/V Xuelong in the Chinese National Arctic Research Expedition during August 19—24,1999. The results show that the net radiation received by the ice surface is mainly lost through the sensible heat flux and the heat flux due to melting ice, and the latent heat flux making small contribution to the heat balance. However, the heat balance of the open water surface was dominated by the radiative flux whereas the latent and sensible heat fluxes and the oceanic heat flux were greater than those on the sea-ice surface. These results emphasize that thermodynamic processes are quite different between air/open water and air/sea-ice over the Arctic Ocean which is important when considering the effect of sea-air-ice interaction on climate change process dur-ing the summer period.
基金supported by the Fundamental Research Funds for the Central Universities(222201817001)Shanghai Sailing Program(21YF140800).
文摘The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of MnFe-based catalysts were studied.The results indicate Sm-modified catalyst have superior low-temperature SCR activity;NO_(x) conversion maintained at nearby to 100%at 90℃ to 240℃.In addition,The N_(2) selectivity of Sm doping remains above 80%in the range of 60℃ to 150℃.In SO_(2) poisoning test,the NO_(x) conversion can be remained>90%after 10 h of reaction.The XPS,NH_(3)-TPD and H_(2)-TPR results show the catalyst with Sm doping enhances the acid sites and oxidation catalytic sites of mixed oxides serves for improving oxygen vacancies and transfer electrons.In situ diffuse reflaxions infrared Fourier transformations spectroscopy(DRIFTS)results show that NO_(x) is more easily adsorbed on the surface after Sm doping,which provided favorable conditions for the NH_(3)-SCR reaction to proceed.The reaction at the catalyst surface will follow the L-H reaction mechanism by transient reaction test.
基金supported by the National Natural Science Foundation of China(No.42176020)the National Key Research and Development Program(No.2022 YFC3105002).
文摘The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated by using a coupled wave-current model.The role of SDP in turbulent mixing and the further dynamics during the entire typhoon period are comprehensively stud-ied.Experimental results show that SDP greatly increases turbulent mixing at all depths under typhoon conditions by up to seven times that under normal weather conditions.SDP generally strengthens sea surface cooling by more than 0.4℃,with the maximum reduction in sea surface temperature(SST)at the during-typhoon stage exceeding 2℃,which is approximately seven times larger than that under normal weather conditions.The SDP-induced decrease in current speed can exceed 0.2ms^(-1),and the change in current direction is generally opposite the wind direction.These results suggest that Stokes drift depresses the effect of strong winds on currents by intensifying turbulent mixing.Mixed layer depth(MLD)is distinctly increased by O(1)during typhoons due to SDP and can deepen by more than 5m.In addition,the continuous effects of SDP on SST,current,and MLD at the after-typhoon stage indi-cate a hysteretic response between SDP and typhoon actions.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFB2601100)the National Natural Science Foundation of China(Grant No.52171246)+4 种基金The Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2019491911)the Open Research Foundation of the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP2005)the Science and Technology Innovation Program of Hunan Province(Grant No.2023RC3136)the Natural Science Foundation of Hunan Province(Grant No.2022JJ20041)Educational Science Foundation of Hunan Province(Grant No.23A0265)。
文摘Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.
基金financially supported by the National Key Research and Development Program of China(2017YFD0200304)。
文摘Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application.
基金Project supported by the National Science Fund for Distinguished Young Scholars(Grant No.T2125014)the Special Fund for Research on National Major Research Instruments of the National Natural Science Foundation of China(Grant No.11927808)the CAS Key Technology Research and Development Team Project(Grant No.GJJSTD20200005)。
文摘Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering.