Oil spill models can effectively simulate the trajectories and fate of oil slicks, which is an essential element in contingency planning and effective response strategies prepared for oil spill accidents. However, whe...Oil spill models can effectively simulate the trajectories and fate of oil slicks, which is an essential element in contingency planning and effective response strategies prepared for oil spill accidents. However, when applied to offshore areas such as the Bohai Sea, the trajectories and fate of oil slicks would be affected by time-varying factors in a regional scale, which are assumed to be constant in most of the present models. In fact, these factors in offshore regions show much more variation over time than in the deep sea, due to offshore bathymetric and climatic characteristics. In this paper, the challenge of parameterizing these offshore factors is tackled. The remote sensing data of the region are used to analyze the modification of wind-induced drift factors, and a well-suited solution is established in parameter correction mechanism for oil spill models. The novelty of the algorithm is the self-adaptive modification mechanism of the drift factors derived from the remote sensing data for the targeted sea region, in respect to empirical constants in the present models. Considering this situation, a new regional oil spill model(i4Oil Spill) for the Bohai Sea is developed, which can simulate oil transformation and fate processes by Eulerian-Lagrangian methodology. The forecasting accuracy of the proposed model is proven by the validation results in the comparison between model simulation and subsequent satellite observations on the Penglai 19-3 oil spill accident. The performance of the model parameter correction mechanism is evaluated by comparing with the real spilled oil position extracted from ASAR images.展开更多
Inductively coupled plasma mass spectrometry (ICP-MS) is the most commonly used technique to deter- mine the abundances of trace elements in a wide range of geological materials. However, incomplete sample digestion...Inductively coupled plasma mass spectrometry (ICP-MS) is the most commonly used technique to deter- mine the abundances of trace elements in a wide range of geological materials. However, incomplete sample digestion, isobaric interferences and instrumental drift remain obvious problems that must be overcome in order to obtain precise and accurate results, For this reason, we have done many experi- ments and developed a set of simple, cost-effective and practical methods widely applicable for precise and rapid determination of trace element abundances in geological materials using ICP-MS. Commonly used high-pressure digestion technique is indeed effective in decomposing refractory phases, but this inevitably produces fluoride complexes that create new problems. We demonstrate that the fluoride complexes formed during high-pressure digestion can be readily re-dissolved using high-pressure vessel at 190 ℃ for only 2 h for 50 mg sample. In the case of isobaric interferences, although oxide (e.g., MO^+/M^+) and hydroxide (e.g., MO^+/M^+) productivity is variable between runs, the (MO^+/M^+)/(CeO^+/Ce^+) and (MOH^+/M^+)/(CeO^+/Ce^+) ratios remain constant, making isobaric interference correction for all other elements of interest straightforward, for which we provide an easy-to-use off-line procedure. We also show that mass-time-intensity drift curve is smooth as recognized previously, for which the correction can be readily done by analyzing a quality-control (QC) solution and using off-line Excel VBA procedure without internal standards. With these methods, we can produce data in reasonable agreement with rec- ommended values of international rock reference standards with a relative error of 〈8% and precision generally better than 5%. Importantly, compared to the widely used analytical practice, we can effectively save 〉60% of time (e.g., 〈24 h vs. 〉60 h).展开更多
An optical hydrogen sulfide(H_2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) la...An optical hydrogen sulfide(H_2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H_2S line at 6 336.62 cm^(-1) in the fundamental absorption band of H_2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H_2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H_2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.展开更多
基金supported by following programs: 1) NSFC-Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406404)The National High Technology Research and Development Program of China (Grant No. 2014AA09A511)+2 种基金The Scientific and Technological Innovation Project of the Qingdao National Laboratory for Marine Science and Technology (Grant No. 2015ASKJ01)International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 61361136001)Open Fund of Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology SOA (Grant No. 201508)
文摘Oil spill models can effectively simulate the trajectories and fate of oil slicks, which is an essential element in contingency planning and effective response strategies prepared for oil spill accidents. However, when applied to offshore areas such as the Bohai Sea, the trajectories and fate of oil slicks would be affected by time-varying factors in a regional scale, which are assumed to be constant in most of the present models. In fact, these factors in offshore regions show much more variation over time than in the deep sea, due to offshore bathymetric and climatic characteristics. In this paper, the challenge of parameterizing these offshore factors is tackled. The remote sensing data of the region are used to analyze the modification of wind-induced drift factors, and a well-suited solution is established in parameter correction mechanism for oil spill models. The novelty of the algorithm is the self-adaptive modification mechanism of the drift factors derived from the remote sensing data for the targeted sea region, in respect to empirical constants in the present models. Considering this situation, a new regional oil spill model(i4Oil Spill) for the Bohai Sea is developed, which can simulate oil transformation and fate processes by Eulerian-Lagrangian methodology. The forecasting accuracy of the proposed model is proven by the validation results in the comparison between model simulation and subsequent satellite observations on the Penglai 19-3 oil spill accident. The performance of the model parameter correction mechanism is evaluated by comparing with the real spilled oil position extracted from ASAR images.
基金supported by National Natural Science Foundation of China(41130314 and 41630968)Chinese Academy of Sciences Innovation Grant(Y42217101L)+1 种基金Qingdao National Laboratory for Marine Science and Technology(2015ASKJ03)Marine Geological Process and Environment(U1606401)
文摘Inductively coupled plasma mass spectrometry (ICP-MS) is the most commonly used technique to deter- mine the abundances of trace elements in a wide range of geological materials. However, incomplete sample digestion, isobaric interferences and instrumental drift remain obvious problems that must be overcome in order to obtain precise and accurate results, For this reason, we have done many experi- ments and developed a set of simple, cost-effective and practical methods widely applicable for precise and rapid determination of trace element abundances in geological materials using ICP-MS. Commonly used high-pressure digestion technique is indeed effective in decomposing refractory phases, but this inevitably produces fluoride complexes that create new problems. We demonstrate that the fluoride complexes formed during high-pressure digestion can be readily re-dissolved using high-pressure vessel at 190 ℃ for only 2 h for 50 mg sample. In the case of isobaric interferences, although oxide (e.g., MO^+/M^+) and hydroxide (e.g., MO^+/M^+) productivity is variable between runs, the (MO^+/M^+)/(CeO^+/Ce^+) and (MOH^+/M^+)/(CeO^+/Ce^+) ratios remain constant, making isobaric interference correction for all other elements of interest straightforward, for which we provide an easy-to-use off-line procedure. We also show that mass-time-intensity drift curve is smooth as recognized previously, for which the correction can be readily done by analyzing a quality-control (QC) solution and using off-line Excel VBA procedure without internal standards. With these methods, we can produce data in reasonable agreement with rec- ommended values of international rock reference standards with a relative error of 〈8% and precision generally better than 5%. Importantly, compared to the widely used analytical practice, we can effectively save 〉60% of time (e.g., 〈24 h vs. 〉60 h).
基金supported by the National Natural Science Foundation of China(Nos.60808020 and 61078041)the Natural Science Foundation of Tianjin(Nos.16JCQNJC02100,15JCYBJC51700 and 16JCYBJC15400)the National Science and Technology Support(No.2014BAH03F01)
文摘An optical hydrogen sulfide(H_2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H_2S line at 6 336.62 cm^(-1) in the fundamental absorption band of H_2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H_2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H_2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.