This paper investigates the magnetic field component impact on cathode spots motion trajectory and the mechanism of periodic contraction.Electromagnetic coils and permanent magnets were installed at the different side...This paper investigates the magnetic field component impact on cathode spots motion trajectory and the mechanism of periodic contraction.Electromagnetic coils and permanent magnets were installed at the different sides of cathode surface,the photographs of cathode spots motion trajectory were captured by a camera.Increasing the number of magnets and decreasing the distance between magnets and cathode both lead to enhancing cathode spots motion velocity.Radii of cathode spots trajectory decrease gradually with the increasing of electromagnetic coil's current,from 40 mm at 0 A to 10 mm at 2.7 A.Parallel magnetic field component intensity influence the speed of cathode spots rotate motion,and perpendicular magnetic field component drives spots drift in the radial direction.Cathode spot's radial drift is controlled by changing the location of the ‘zero line' where perpendicular magnetic component shifts direction and the radius of cathode spots trajectory almost equal to ‘zero line'.展开更多
Whereas wrack dynamics on tidally influenced beaches have been studied to some detail, essentially nothing is known about how drift lines in tide-free coastal systems vary in space and time. We provide evidence for hi...Whereas wrack dynamics on tidally influenced beaches have been studied to some detail, essentially nothing is known about how drift lines in tide-free coastal systems vary in space and time. We provide evidence for high spatial and temporal dynamics of beach-cast wrack on a sand beach in the Western Baltic Sea. Over the course of one year, the amount of weekly deposited macrophyte wrack fluctuated from zero to 3000 g·m-1 shoreline. Wrack mostly accumulated just above the waterline. Part of the beach-cast wrack is frequently re-suspended into coastal water upon extreme high water level events, or wrack patches are translocated landwards by wind-driven changes in water level or along the shoreline by winds. Consequently, the deposited wrack does accumulate, but a steady-state of ca 400 g·m-1 builds up within 2 - 3 weeks. Eelgrass wrack buried in sand decomposed almost twice as fast as on top of the sand or re-suspended in water. Fragmentation of leaves promoted decomposition only when wrack remained on the sand surface. The spatial and temporal distribution of this valuable source of organic matter is unpredictable and depends on wind and wind-driven waves.展开更多
文摘This paper investigates the magnetic field component impact on cathode spots motion trajectory and the mechanism of periodic contraction.Electromagnetic coils and permanent magnets were installed at the different sides of cathode surface,the photographs of cathode spots motion trajectory were captured by a camera.Increasing the number of magnets and decreasing the distance between magnets and cathode both lead to enhancing cathode spots motion velocity.Radii of cathode spots trajectory decrease gradually with the increasing of electromagnetic coil's current,from 40 mm at 0 A to 10 mm at 2.7 A.Parallel magnetic field component intensity influence the speed of cathode spots rotate motion,and perpendicular magnetic field component drives spots drift in the radial direction.Cathode spot's radial drift is controlled by changing the location of the ‘zero line' where perpendicular magnetic component shifts direction and the radius of cathode spots trajectory almost equal to ‘zero line'.
文摘Whereas wrack dynamics on tidally influenced beaches have been studied to some detail, essentially nothing is known about how drift lines in tide-free coastal systems vary in space and time. We provide evidence for high spatial and temporal dynamics of beach-cast wrack on a sand beach in the Western Baltic Sea. Over the course of one year, the amount of weekly deposited macrophyte wrack fluctuated from zero to 3000 g·m-1 shoreline. Wrack mostly accumulated just above the waterline. Part of the beach-cast wrack is frequently re-suspended into coastal water upon extreme high water level events, or wrack patches are translocated landwards by wind-driven changes in water level or along the shoreline by winds. Consequently, the deposited wrack does accumulate, but a steady-state of ca 400 g·m-1 builds up within 2 - 3 weeks. Eelgrass wrack buried in sand decomposed almost twice as fast as on top of the sand or re-suspended in water. Fragmentation of leaves promoted decomposition only when wrack remained on the sand surface. The spatial and temporal distribution of this valuable source of organic matter is unpredictable and depends on wind and wind-driven waves.