期刊文献+
共找到8,847篇文章
< 1 2 250 >
每页显示 20 50 100
Synthetic polymers:A review of applications in drilling fluids 被引量:2
1
作者 Shadfar Davoodi Mohammed Al-Shargabi +2 位作者 David A.Wood Valeriy S.Rukavishnikov Konstantin M.Minaev 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期475-518,共44页
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio... With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided. 展开更多
关键词 Synthetic versus natural polymers Nanopolymers drilling fluid additives LUBRICITY Clay swelling Hole cleaning
下载PDF
A novel responsive stabilizing Janus nanosilica as a nanoplugging agent in water-based drilling fluids for exploiting hostile shale environments
2
作者 Alain Pierre Tchameni Lv-Yan Zhuo +5 位作者 Lesly Dasilva Wandji Djouonkep Robert Dery Nagre Lu-Xin Chen Lin Zhao Chao Ma Bin-Qiang Xie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1190-1210,共21页
Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not bee... Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not been very effective in high-temperature drilling operations. Thermo-responsive Janus nanocomposites are expected to strongly interact with clay particles from the inward hemisphere of nanomaterials, which drive the establishment of a tighter hydrophobic membrane over the shale surface at the outward hemisphere under geothermal conditions for shale stabilization. This work combines the synergistic benefits of thermo-responsive and zwitterionic nanomaterials to synchronously enhance the chemical inhibitions and plugging performances in shale under harsh conditions. A novel thermoresponsive Janus nanosilica(TRJS) exhibiting zwitterionic character was synthesized, characterized,and assessed as shale stabilizer for WBDFs at high temperatures. Compared to pristine nanosilica(Si NP)and symmetrical thermo-responsive nanosilica(TRS), TRJS exhibited anti-polyelectrolyte behaviour, in which electrolyte ions screened the electrostatic attraction between the charged particles, potentially stabilizing nanomaterial in hostile shaly environments(i.e., up to saturated brine or API brine). Macroscopically, TRJS exhibited higher chemical inhibition than Si NP and TRS in brine, prompting a better capability to control pressure penetration. TRJS adsorbed onto the clay surface via chemisorption and hydrogen bonding, and the interactions became substantial in brine, according to the results of electrophoretic mobility, surface wettability, and X-ray diffraction. Thus, contributing to the firm trapping of TRJS into the nanopore structure of the shale, triggering the formation of a tight hydrophobic membrane over the shale surface from the outward hemisphere. The addition of TRJS into WBDF had no deleterious effect on fluid properties after hot-treatment at 190℃, implying that TRJS could find potential use as a shale stabilizer in WBDFs in hostile environments. 展开更多
关键词 Janus nanosilica Thermo-responsive copolymer Anti-polyelectrolyte effect Shale stabilizer Inhibition Plugging drilling fluid
下载PDF
Chemical modification of barite for improving the performance of weighting materials for water-based drilling fluids
3
作者 Li-Li Yang Ze-Yu Liu +3 位作者 Shi-bo Wang Xian-Bo He Guan-Cheng Jiang Jie Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期551-566,共16页
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r... With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs. 展开更多
关键词 drilling fluids Weighting materials Filtration control Reservoir protection Stability property
下载PDF
The Conversion of Non-Dispersed Polymers into Low-Potassium Anti-Collapse Drilling Fluids
4
作者 Hao Hu Jian Guan +2 位作者 Shanfa Tang Jialuo Rong Yuanpeng Cheng 《Fluid Dynamics & Materials Processing》 EI 2024年第2期325-335,共11页
Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low ... Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances. 展开更多
关键词 Non-dispersed polymer drilling fluid low potassium anti-collapsing drilling fluid drilling fluid conversion drilling fluid reuse filter vector
下载PDF
Natural rubber latex as a potential additive for water-based drilling fluids
5
作者 Jun Yang Guan-Cheng Jiang +4 位作者 Jing-Tian Yi Yin-Bo He Li-Li Yang Teng-Fei Dong Guo-Shuai Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2677-2687,共11页
The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and ... The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF. 展开更多
关键词 Natural materials Water-based drilling fluids Natural rubber latex Bentonite suspensions Filtration loss
下载PDF
Research progress and development of deep and ultra-deep drilling fluid technology
6
作者 SUN Jinsheng YANG Jingbin +2 位作者 BAI Yingrui LYU Kaihe LIU Fengbao 《Petroleum Exploration and Development》 SCIE 2024年第4期1022-1034,共13页
The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,hi... The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,high pressure and high stress,fracture development,wellbore instability,drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling,scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology,high-temperature resistant oil-based/synthetic drilling fluid technology,drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology.However,there are still some key problems such as insufficient resistance to high temperature,high pressure and high stress,wellbore instability and serious lost circulation.Therefore,the development direction of deep and ultra-deep drilling fluid technology in the future is proposed:(1)The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability,improving rheological properties,strengthening filtration control and improving compatibility with formation.(2)The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer,rheological regulator and related supporting technologies.(3)The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials,and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms.(4)The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology,the research and application of high-performance plugging materials,the exploration of diversified plugging techniques and methods,and the improvement of environmental protection and production safety awareness. 展开更多
关键词 deep and ultra-deep drilling high temperature resistant drilling fluid reservoir protection drilling fluid lost circulation control safety and environmental protection technical prospects
下载PDF
Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs
7
作者 SUN Jinsheng XU Chengyuan +6 位作者 KANG Yili JING Haoran ZHANG Jie YANG Bin YOU Lijun ZHANG Hanshi LONG Yifu 《Petroleum Exploration and Development》 SCIE 2024年第2期430-439,共10页
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ... For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection. 展开更多
关键词 shale oil and gas drilling fluid fracturing fluid stress-sensitive solid blocking formation damage reservoir protection
下载PDF
A study of the properties of hydrophobically associating water-soluble polymers used in drilling fluids
8
作者 舒福昌 史茂勇 +4 位作者 张岩 张峰 黄红玺 向兴金 王建华 《Petroleum Science》 SCIE CAS CSCD 2004年第4期57-61,共5页
Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution... Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids. 展开更多
关键词 Hydrophobically associating water-soluble polymers drilling fluids VISCOSITY salt resistance
下载PDF
High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells 被引量:10
9
作者 Wang Fuhua Tan Xuechao +3 位作者 Wang Ruihe Sun Mingbo Wang Li Liu Jianghua 《Petroleum Science》 SCIE CAS CSCD 2012年第3期354-362,共9页
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines... To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site. 展开更多
关键词 High-density water-based drilling fluid rheological behavior CLAY high temperature high pressure linear fitting rheological model mathematical model
下载PDF
Hydrophobic silica nanoparticle-stabilized invert emulsion as drilling fluid for deep drilling 被引量:8
10
作者 Maliheh Dargahi-Zaboli Eghbal Sahraei Behzad Pourabbas 《Petroleum Science》 SCIE CAS CSCD 2017年第1期105-115,共11页
An oil-based drilling fluid should be stable and tolerant to high temperatures for use in deep drilling. An invert emulsion of water in oil is a good choice as an oil- based drilling fluid which is a mixture of a soli... An oil-based drilling fluid should be stable and tolerant to high temperatures for use in deep drilling. An invert emulsion of water in oil is a good choice as an oil- based drilling fluid which is a mixture of a solid phase and two immiscible liquid phases stabilized by a polymeric surfactant. In deep drilling, due to high temperatures, the polymeric surfactant degrades and a phase separation occurs. Here, octadecyltrimethoxysilane-modified silica nanoparticles were used to form a stable invert emulsion of water in oil for the drilling fluid model which resulted in a milky fluid with the formation of 60 gm water droplets. In addition, rheological study showed that using hydrophobic silica nanoparticles resulted in a stable water in oil invert emulsion with desired properties for a drilling fluid that can be modified by adjusting the nanoparticle nature and content. Aging experiments at 120 ℃ indicated that they also have good stability at high temperatures for challenging drilling operations. 展开更多
关键词 Deep drilling drilling fluid model High-temperature aging RHEOLOGY Silica nanoparticles Stable invert emulsion
下载PDF
Gas-hydrate formation,agglomeration and inhibition in oil-based drilling fluids for deep-water drilling 被引量:9
11
作者 Fulong Ning Ling Zhang +2 位作者 YunzhongTu Guosheng Jiang Maoyong Shi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期234-240,共7页
One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were teste... One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF. 展开更多
关键词 oil-based drilling fluids gas hydrates water cut formation and agglomeration INHIBITOR
下载PDF
Development and applications of solids-free oil-in-water drilling fluids 被引量:5
12
作者 Yue Qiansheng Ma Baoguo 《Petroleum Science》 SCIE CAS CSCD 2008年第2期153-158,共6页
The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/... The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/W) emulsion drilling fluid is one type of low-density drilling fluid suitable for depleted fractured reservoirs. In this paper, the solids-free O/W drilling fluid was developed and has been successfully used in the Bozhong 28-1 oil and gas field, by which lost circulation, a severe problem occurred previously when drilling into fractured reservoir beds, was controlled, thereby minimizing formation damage. The O/W emulsion drilling fluid was prepared by adding 20% (by volume) No. 5 mineral oil (with high flash point, as dispersed phase) into seawater (as continuous phase). Surfactant HTO-1 (as a primary emulsifier) and non-ionic surfactant HTO-2 (as a secondary emulsifier) were added into the drilling fluid system to stabilize the emulsion; and YJD polymer was also added to seawater to improve the viscosity of the continuous phase (seawater). The drilling fluid was characterized by high flash point, good thermal stability and high stability to crude oil contamination. 展开更多
关键词 Oil-in-water emulsion drilling fluids solids-free drilling fluids lost circulation depletedreservoir fractured reservoir
下载PDF
Experimental study of low-damage drilling fluid to minimize waterblocking of low-permeability gas reservoirs 被引量:4
13
作者 Zhang Hongxia Yan Jienian +2 位作者 Lu Yu Shu Yong Zhao Shengying 《Petroleum Science》 SCIE CAS CSCD 2009年第3期271-276,共6页
This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Ba... This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Based on investigation of the geological characteristics and the potential formation damage of the Permian formation of the reservoir, waterblocking due to invasion of drilling or completion fluids was identified one of the most severe causes of damage to gas well deliverability. By adopting the phase trap prevention method, ideal packing theory, and film-forming technology, a lowdamage drilling fluid, sodium formate brine containing efficient waterblocking preventing surfactants, optimized temporary bridging agents (TBAs), and film-forming agents has been developed. The performance of the new drilling fluid was evaluated by using a variety of techniques. The results show that the fluid has good rheological properties, good strong shale-swelling inhibition, good temporary plugging effect, ultra-low filtration, and good lubricity. It can efficiently minimize waterblocking and can be used to drill horizontal wells with minimal intervention of the reservoir in the Sulige Gas Field. 展开更多
关键词 Low-permeability gas reservoir waterblocking ideal packing theory (IPT) film-forming agent drilling fluid
下载PDF
Carbon nanotube enhanced water-based drilling fluid for high temperature and high salinity deep resource development 被引量:5
14
作者 Jing-Ping Liu Xian-Fa Zhang +6 位作者 Wen-Chao Zhang Kai-He Lv Yin-Rui Bai Jin-Tang Wang Xian-Bin Huang Jia-Feng Jin Jin-Sheng Sun 《Petroleum Science》 SCIE CAS CSCD 2022年第2期916-926,共11页
Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite i... Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite in the drilling fluid and cause the coalescence of bentonite particles.As a result,the particles coalesce,the grid structure is destroyed,and the rheological properties,rock-carrying capacity and filtration properties are lost.To resolve the foregoing,in this study,0.05-wt%carbon nanotubes are introduced into a 4%bentonite drilling fluid under conditions where the temperature and concentration of added Na Cl reach 180°C and 10 wt%,respectively.The carbon nanotubes adsorb on the bentonite surface and increase the space among bentonite particles.The steric hindrance prevents the coalescence of bentonite in high temperature and high salt environment.Thus bentonite maintains the small size distribution of bentonite and supports the bentonite grid structure in the drilling fluid.As a result,the rock-carrying capacity of the drilling fluid increases by 85.1%.Moreover,the mud cake formed by the accumulation of small-sized bentonite particles is dense;consequently,the filtration of bentonite drilling fluid reduced by 30.2%. 展开更多
关键词 High temperature Water-based drilling fluid High salinity Carbon nanotube Deep resources
下载PDF
Notoginsenoside as an environmentally friendly shale inhibitor in water-based drilling fluid 被引量:4
15
作者 Jin-Sheng Sun Zong-Lun Wang +6 位作者 Jing-Ping Liu Kai-He Lv Fan Zhang Zi-Hua Shao Xiao-Dong Dong Zhi-Wen Dai Xian-Fa Zhang 《Petroleum Science》 SCIE CAS CSCD 2022年第2期608-618,共11页
The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systemat... The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systematically studied for the first time.The inhibition performance of NS was evaluated via inhibition evaluation tests,including mud ball immersion tests,linear expansion tests,shale rolling recovery tests,and compressive strength tests.The inhibition mechanism of NS was analyzed using Fourier transform infrared spectroscopy(FTIR),contact angle measurements,particle size distribution determination,thermogravimetric analysis(TGA),and scanning electron microscopy(SEM).The experimental results demonstrate that NS is able to adhere to the clay surface,forming a hydrophobic film that prevents the entry of water molecules and inhibiting the hydration dispersion of the clay.Because of this,NS can maintain the original state of bentonite pellets in water,which can effectively reduce the swelling rate of bentonite,increase the recovery rate of shale drill cuttings,maintain the strength of the shale,and therefore maintain the stability of the borehole wall during drilling.In addition,NS is non-toxic,degradable,and compatible with water-based drilling fluids.The above advantages make NS a promising candidate for use as an environmentally friendly shale inhibitor. 展开更多
关键词 Notoginsenoside Shale inhibition Environmentally friendly Water-based drilling fluid Inhibition mechanism
下载PDF
Novel Water-Based Drilling and Completion Fluid Technology to Improve Wellbore Quality During Drilling and Protect Unconventional Reservoirs 被引量:18
16
作者 Guancheng Jiang Jinsheng Sun +5 位作者 Yinbo He Kaixiao Cui Tengfei Dong Lili Yang Xukun Yang Xingxing Wang 《Engineering》 SCIE EI CAS 2022年第11期129-142,共14页
The efficient exploration and development of unconventional oil and gas are critical for increasing the self-sufficiency of oil and gas supplies in China.However,such operations continue to face serious problems(e.g.,... The efficient exploration and development of unconventional oil and gas are critical for increasing the self-sufficiency of oil and gas supplies in China.However,such operations continue to face serious problems(e.g.,borehole collapse,loss,and high friction),and associated formation damage can severely impact well completion rates,increase costs,and reduce efficiencies.Water-based drilling fluids possess certain advantages over oil-based drilling fluids(OBDFs)and may offer lasting solutions to resolve the aforementioned issues.However,a significant breakthrough with this material has not yet been made,and major technical problems continue to hinder the economic and large-scale development of unconventional oil and gas.Here,the international frontier external method,which only improves drilling fluid inhibition and lubricity,is expanded into an internal-external technique that improves the overall wellbore quality during drilling.Bionic technologies are introduced into the chemical material synthesis process to imitate the activity of life.A novel drilling and completion fluid technique was developed to improve wellbore quality during drilling and safeguard formation integrity.Macroscopic and microscopic analyses indicated that in terms of wellbore stability,lubricity,and formation protection,this approach could outperform methods that use typical OBDFs.The proposed method also achieves a classification upgrade from environmentally protective drilling fluid to an ecologically friendly drilling fluid.The developed technology was verified in more than 1000 unconventional oil and gas wells in China,and the results indicate significant alleviation of the formation damage attributed to borehole collapse,loss,and high friction.It has been recognized as an effective core technology for exploiting unconventional oil and gas resources.This study introduces a novel research direction for formation protection technology and demonstrates that observations and learning from the natural world can provide an inexhaustible source of ideas and inspire the creation of original materials,technologies,and theories for petroleum engineering. 展开更多
关键词 Formation protection Wellbore quality Unconventional oil and gas drilling and completion fluid BIONICS
下载PDF
Fluid-solid coupling model for studying wellbore instability in drilling of gas hydrate bearing sediments 被引量:3
17
作者 程远方 李令东 +1 位作者 S. MAHMOOD 崔青 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第11期1421-1432,共12页
As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and p... As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re- duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS. 展开更多
关键词 gas hydrate bearing sediment wellbore stability fluid-solid coupling mechanical property drilling fluid
下载PDF
Performance evaluation of laponite as a mud-making material for drilling fluids 被引量:3
18
作者 Zheng-Qiang Xiong Xiao-Dong Li +1 位作者 Fan Fu Yan-Ning Li 《Petroleum Science》 SCIE CAS CSCD 2019年第4期890-900,共11页
In this study, laponite was tested as a mud-making material for drilling fluids. Laponite is a synthetic smectite clay with a structure and composition closely resembling the natural clay mineral hectorite. Commercial... In this study, laponite was tested as a mud-making material for drilling fluids. Laponite is a synthetic smectite clay with a structure and composition closely resembling the natural clay mineral hectorite. Commercially available laponite was characterized by X-ray di ractometry, scanning electron microscopy and infrared spectrometry. Its dispersibility, salt resistance and high-temperature resistance were evaluated. The results showed that laponite possessed superior cation exchange capacity(140.4 mmol/100 g) with interlayer cations of Na^+ and Li^+. Laponite could easily be dispersed in water to yield increased viscosity with no influence from hydration time or temperature. On the other hand, laponite dispersions displayed an excellent heat resistance, with invariant apparent viscosity at high temperatures. For instance, the apparent viscosity of the2 wt% laponite dispersion underwent changes between 22 and 24 mPa s after hot rolling at 180–240 °C for 16 h. Compared to existing mud-making materials, laponite exhibited better mud-making properties. Furthermore, laponite revealed good compatibility with other additives, and the water-based drilling fluids prepared with laponite as mud-making material showed an excellent stability at elevated temperatures and superior performance–cost ratios. Overall, these findings indicated that laponite had an excellent dispersibility at high temperatures and hence would have promising applications as high-temperature mud-making material for preparing water-based drilling fluids designed for ultra-high-temperature environments. 展开更多
关键词 LAPONITE Mud-making material DISPERSIBILITY High-temperature tolerance Ultra-high-temperature water-based drilling fluids
下载PDF
Determining the fluorescent components in drilling fluid by using NMR method 被引量:5
19
作者 Wang Zhizhan Qin Liming +2 位作者 Lu Huangsheng Li Xin Cai Qing 《Chinese Journal Of Geochemistry》 EI CAS CSCD 2015年第3期410-415,共6页
Fluorescent additives can reduce drilling operation risks, especially during high angle deviated well drilling and when managing stuck pipe problems. However, they can affect oil discovery and there is a need to reduc... Fluorescent additives can reduce drilling operation risks, especially during high angle deviated well drilling and when managing stuck pipe problems. However, they can affect oil discovery and there is a need to reduce the level of fluorescents or change the drilling fluids to prevent loss of drilling velocity and efficiency. In this paper, based on the analysis of drilling fluids by NMR with high sensitivity, solid and liquid additives have been analyzed under conditions with different fluorescent levels and temperatures. The results show that all of the solid additives have no NMR signal, and therefore cannot affect oil discovery during drilling. For the liquid additives with different oil products, the characterizations can be quantified and evaluated through a T2 cumulated spectrum, oil peak(T2g), and oil content of the drilling fluids. NMR can improve the application of florescent additives and help us to enhance oil exploration benefits and improve drilling operations and efficiency. 展开更多
关键词 核磁共振法 钻井液 荧光灯 液体石油产品 组分 测定 核磁共振信号 钻井作业
下载PDF
Novel KCl/Silicate Drilling Fluids for Alleviating Problems in Troublesome Shale Formations in Sudan 被引量:2
20
作者 Guo Jiankang Yan Jienian +3 位作者 Fan Weiwang Zhang Hongjing Wang Qunli Yu Zhihai 《Petroleum Science》 SCIE CAS CSCD 2005年第4期34-40,共7页
For several decades, wells drilled in Block 6, Sudan, have experienced serious hole-instability problems related to drilling fluids due to the highly reactive and dispersive shales that exist in the Aradeiba and Abu G... For several decades, wells drilled in Block 6, Sudan, have experienced serious hole-instability problems related to drilling fluids due to the highly reactive and dispersive shales that exist in the Aradeiba and Abu Gabra formations. These problems included washout hole sections combined with tight holes, as well as serious sloughing. Frequent wiper trips were required and logging of the wells was not usually successful. Previously, several conventional inhibitive water-based drilling fluids such as KCl/polymer, KCl/lime/polymer and KCl/PHPA (partially hydrolyzed polyacrylamide) have been used in this area, but with only marginal improvements in hole stability and drilling performance. Recently, a newly formulated KCl/sodium silicate system, which is characterized by the good rheological properties and filtration control, was developed and used for providing the necessary inhibitive character. The first trial well was drilled with this kind of drilling fluid in Block 6, Sudan, and the following benefits were observed: (1) Excellent integrity exhibited by drilled cuttings for shale formations; (2) Stable borehole kept with lower mud weight; (3) Reduced wiper trips; and (4) In-gauge borehole shown from caliper logs. Later on, five more wells were drilled with the KCl/sodium silicate system in this area. It was found that the KCl/sodium silicate system can fully meet the demands of drilling operations in this area. Case studies are presented in this paper in terms of wiper trips, inhibitive character of cuttings, hole conditions and mud weight. 展开更多
关键词 KCl/silicate drilling fluids well bore stability inhibitive character rheological property
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部