期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Hydrophobic silica nanoparticle-stabilized invert emulsion as drilling fluid for deep drilling 被引量:7
1
作者 Maliheh Dargahi-Zaboli Eghbal Sahraei Behzad Pourabbas 《Petroleum Science》 SCIE CAS CSCD 2017年第1期105-115,共11页
An oil-based drilling fluid should be stable and tolerant to high temperatures for use in deep drilling. An invert emulsion of water in oil is a good choice as an oil- based drilling fluid which is a mixture of a soli... An oil-based drilling fluid should be stable and tolerant to high temperatures for use in deep drilling. An invert emulsion of water in oil is a good choice as an oil- based drilling fluid which is a mixture of a solid phase and two immiscible liquid phases stabilized by a polymeric surfactant. In deep drilling, due to high temperatures, the polymeric surfactant degrades and a phase separation occurs. Here, octadecyltrimethoxysilane-modified silica nanoparticles were used to form a stable invert emulsion of water in oil for the drilling fluid model which resulted in a milky fluid with the formation of 60 gm water droplets. In addition, rheological study showed that using hydrophobic silica nanoparticles resulted in a stable water in oil invert emulsion with desired properties for a drilling fluid that can be modified by adjusting the nanoparticle nature and content. Aging experiments at 120 ℃ indicated that they also have good stability at high temperatures for challenging drilling operations. 展开更多
关键词 Deep drilling drilling fluid model High-temperature aging RHEOLOGY Silica nanoparticles Stable invert emulsion
下载PDF
DESIGN AND CAD SYSTEM OF THE TOOL FOR DRILL FLUTE
2
作者 XIANG Wenjiang ZHOU Zhixiong +1 位作者 CAO Zhaozhan YAN Lan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期9-12,共4页
Based on the principles of differential geometry and kinematics, a mathematical model is developed to describe the grinding wheel axial cross-section with the radial cross-section of the flute in a given drill under t... Based on the principles of differential geometry and kinematics, a mathematical model is developed to describe the grinding wheel axial cross-section with the radial cross-section of the flute in a given drill under the basic engagement condition between the generating flute and the generated grinding wheel (or disk milling tool). The mathematical model is good for the flute in the radial cross-section consisting of three arcs. Furthermore, a CAD system is also developed to represent the axial cross-section of the grinding wheel (or disk milling tool). With the system, the grinding wheel (or disk milling tool) axial cross-section that corresponds to the three-arc flute cross section can be conveniently simulated. Through the grinding experiment of drill flutes, the method and the CAD system are proved to be feasible and reasonable. 展开更多
关键词 Drill flute Grinding wheel Mathematical model CAD system
下载PDF
STUDY ON THE ON-LINE OPTIMAL CONTROL OF PARAMETERS OF THREE-CONE BLAST HOLE DRILLS
3
作者 Zhang Hui Li Kuixian +1 位作者 Tong Jiexin Wen Bangchun(Northeastern University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第1期38-41,共17页
A model recognition method for the on-line optimal control of the parameters ofthree-cone blast drills is developed. It takes a few of on-line measurements and has a rapidoptimization speed. The mathematic model for o... A model recognition method for the on-line optimal control of the parameters ofthree-cone blast drills is developed. It takes a few of on-line measurements and has a rapidoptimization speed. The mathematic model for on-line optimal control of the parameters and thedetermination of the parameters in the model are also presented. 展开更多
关键词 Blast hole drill On-line optimization model reognition
全文增补中
Cutting force and specific energy for rotary ultrasonic drilling based on kinematics analysis of vibration effectiveness 被引量:1
4
作者 Zhen LI Songmei YUAN +2 位作者 Jiang MA Jun SHEN Andre D.L.BATAKO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期376-387,共12页
Rotary ultrasonic drilling(RUD)has become an effective approach for machining advanced composites which are widely using in the field of aeronautics.The cutting kinematics and the corresponding material removal mechan... Rotary ultrasonic drilling(RUD)has become an effective approach for machining advanced composites which are widely using in the field of aeronautics.The cutting kinematics and the corresponding material removal mechanisms are distinct in different drilling areas during RUD.However,these fundamentals have not been fully considered in the existing studies.In this research,two distinct forms of interaction induced by ultrasonic vibration were considered as impact-separation and vibratory lapping between the abrasives and workpiece.And the conditions to guarantee the effectiveness of these interactions were obtained to eliminate diminishing effects of ultrasonic vibration.Based on indentation fracture theory,the penetration depth of abrasives and the axial drilling force model was derived for RUD.The verification tests of C/SiC composites resulted in a prediction error within 15%.Due to the minimal volume of material removed during each vibration cycle,the drilling force was more stable in vibration assisted mode.The specific drilling energy of RUD was firstly calculated based on the measured drilling load.It was found the drilling parameters should be matched with vibration frequency and amplitude to make better usage of the advantages of ultrasonic vibration,which is critical in the vibration assisted processing of advanced materials. 展开更多
关键词 Ceramic matrix composite drilling force modelling Kinematics analysis Rotary ultrasonic drilling Specific drilling energy Vibration diminishing effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部