Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing dril...Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing drilling for a slope stability project in Hong Kong,this paper further develops the drilling process monitoring(DPM)method for digitally profiling the subsurface geomaterials of weathered granitic rocks using a compressed airflow driven percussive-rotary drilling machine with down-the-hole(DTH)hammer.Seven transducers are installed on the drilling machine and record the chuck displacement,DTH rotational speed,and five pressures from five compressed airflows in real-time series.The mechanism and operations of the drilling machine are elaborated in detail,which is essential for understanding and evaluating the drilling data.A MATLAB program is developed to automatically filter the recorded drilling data in time series and classify them into different drilling processes in sub-time series.These processes include penetration,push-in with or without rod,pull-back with or without rod,rod-tightening and rod-untightening.The drilling data are further reconstructed to plot the curve of drill-bit depth versus the net drilling time along each of the six drillholes.Each curve is found to contain multiple linear segments with a constant penetration rate,which implies a zone of homogenous geomaterial with different weathering grades.The effect from fluctuation of the applied pressures is evaluated quantitatively.Detailed analyses are presented for accurately assess and verify the underground profiling and strength in weathered granitic rock,which provided the basis of using DPM method to confidently assess drilling measurements to interpret the subsurface profile in real time.展开更多
The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process f...The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process flow that is aimed at improving efficiency, while giving attention to stability and safety at the same time. The paper describes the process flow of dual drilling centers and a hierarchical division of rigs based on the different modes of transportation of various drilling support systems. The general layout-centripetal overall arrangement spatially was determined based on drilling efficiency. We derived our modules according to drilling functionality; the modules became our basic layout units. We applied different layout algorithm to mark out the upper and lower decks. That is, the upper deck was designed based on the lowest transportation cost while the lower deck's calculations were based on the best-fit scope. Storage configurations in columns and pontoons were also considered for the layout design. Finally the center of gravity was taken into consideration and the general layout was adjusted accordingly, to result in an optimal center of gravity. The methodology of the general layout can provide a reference for implementation of domestic designs of semi-submersible rigs.展开更多
Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from...Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from two adjacent vertical drillholes that were formed with the same hydraulic rotary drilling machine and bit.The analysis of original factual data is presented to obtain the constant drilling speed during net drilling process.According to the factual data along two adjacent drillholes,the digitalization results respectively include 461 linear zones and 210 linear zones with their constant drilling speeds and associated drilling parameters.The digitalization results can accurately present the spatial distributions and interface boundaries of drilled geomaterials and the results are consistent with the paralleled site loggings.The weighted average drilling speeds from 2.335 m/min to 0.044 m/min represent 13 types of drilled geomaterials from soils to hard rocks.The quantitative relation between drilling speed and strength property is provided.The digitalization results can statistically profile the basic strength quality grades of III to VI from soils to hard rocks.The thickness distributions of four strength quality grades are presented for each individual type of geomaterials along two drillholes.In total,50.2%of geomaterials from drillhole A are grade IV and 57.4%of geomaterials from drillhole B are grade III.The digitalization results can offer an accurate and cost-effective tool to quantitatively describe the spatial distribution and in situ strength profile of drilled geomaterials in the current drilling projects.展开更多
Shallow gas is considered one of the most serious geological hazards in deepwater drilling because it has the characteristics of suddenness and is difficult to deal with.To perform a quantitative evaluation of shallow...Shallow gas is considered one of the most serious geological hazards in deepwater drilling because it has the characteristics of suddenness and is difficult to deal with.To perform a quantitative evaluation of shallow gas risk during deepwater drilling,a numerical model for calculating gas invasion volume is established based on gas-water two-phase flow theory.The model considers the effect of the dynamic drilling process,and the influencing factors which affect the gas invasion volume are analyzed.Results indicate that the gas invasion rate and accumulated gas invasion volume increase with increasing bottom-hole pressure difference.A linear relationship exists between gas invasion volume and bottom-hole pressure difference.The duration of gas invasion increases as the shallow gas zone thickness increases,and the accumulated gas invasion volume grows as shallow gas zone thickness increases.The increase in formation permeability,water depth,and rate of penetration will enhance the gas invasion rate.However,these three factors can hardly affect the accumulated gas invasion volume.The gas flow rate increases significantly with increasing burial depth of shallow gas.On the basis of influencing factor analysis,a series of methods that consider different risk levels is proposed to control shallow gas,which can provide a reference for the prevention of shallow gas disasters during deepwater drilling.展开更多
The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology forma...The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology formations, geohazards, underground water, and boundary of orebody. To expand the further use and test the accuracy in identification of formation, an R-20 rotary-hydraulic drill rig was instrumented with a digital drilling process monitoring system (DPM) for drilling in an intricate decomposed granite site. In this test ground, the boreholes revealed that the weathered granite alternately changes between moderate and strong. The qualitative and quantitative analysis of the penetrating parameters, indicates the effective thrust force, rotary speed, flushing pressure, penetrating rate, and displacement of the bit fluctuate at ground interfaces. It shows that the parameters get a good response with the change of rock strength at the interfaces, which can reveal the change of the intricate granite formation. Besides, a variable-slope method has been established, for identification of dominative and subsidiary interfaces in the granite site. The result from a t-test shows that the confi- dence of the instrumented drilling system in identification of the geotechnical interfaces is up to 99%.展开更多
This study purposes an in situ testing method on quality assessment of soil improvement.Factual drilling data includes the spatial distribution and in situ strength of untreated and treated soil along three different ...This study purposes an in situ testing method on quality assessment of soil improvement.Factual drilling data includes the spatial distribution and in situ strength of untreated and treated soil along three different drillholes measured by on-site drilling monitoring method.These factual drilling data can characterize the degree of soil improvement by penetration injection with permeable polyurethane.Result from on-site drilling monitoring shows that the linear zones represent constant drilling speeds shown in the plot of drill bit advancement vs.net drilling time,which indicates the spatial distributions of soil profile.The soil profile at the study site is composed of four layers,which includes fill,untreated silty clay,treated silty clay,and mucky soil.The results of soil profile are verified by the parallel site loggings.The constant drilling speeds profile the coring-resistant strength of drilled soils.By comparing with the untreated silty clay,the constant drilling speeds of the treated silty clay have been decreased by 13.0-62.8%.Two drilling-speed-based indices of 61.2%and 65.6%are proposed to assess the decreased average drilling speed and the increased in situ strength of treated silty clay.Laboratory tests,i.e.uniaxial compressive strength(UCS)test,have been performed with core sample to investigate and characterize in situ strength by comparing that with drilling speeds.Results show that the average predicted strengths of treated silty clay are 2.4-6.9 times higher than the average measured strength of untreated silty clay.The UCS-based indices of 374.5%and 344.2%verified the quality assessment(QA)results by this new in situ method.This method provides a cost-effective tool for quality assessment of soil improvement by utilizing the digital drilling data.展开更多
A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in ...A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in real time during normal subsurface investigation. The identification method for dominative and subsidiary interfaces has been established. The study reveals that the monitored drilling parameters are dependent on geotechnical materials and can be further applied to characterize ground interfaces. The t-test between manual logging and DPM logging has been carried out. The results show that the DPM has high accuracy in interfaces detection and well agreement with the manual logging. The findings show that the device and data analysis method are of potential application in subsurface drilling exploration in weathered granites. It also seems to have prospective uses in the determination of orebody boundary as well as in the detection of geohazards.展开更多
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 7137/03E and R7005/01E)。
文摘Rock and geotechnical engineering investigations involve drilling holes in ground with or without retrieving soil and rock samples to construct the subsurface ground profile.On the basis of an actual soil nailing drilling for a slope stability project in Hong Kong,this paper further develops the drilling process monitoring(DPM)method for digitally profiling the subsurface geomaterials of weathered granitic rocks using a compressed airflow driven percussive-rotary drilling machine with down-the-hole(DTH)hammer.Seven transducers are installed on the drilling machine and record the chuck displacement,DTH rotational speed,and five pressures from five compressed airflows in real-time series.The mechanism and operations of the drilling machine are elaborated in detail,which is essential for understanding and evaluating the drilling data.A MATLAB program is developed to automatically filter the recorded drilling data in time series and classify them into different drilling processes in sub-time series.These processes include penetration,push-in with or without rod,pull-back with or without rod,rod-tightening and rod-untightening.The drilling data are further reconstructed to plot the curve of drill-bit depth versus the net drilling time along each of the six drillholes.Each curve is found to contain multiple linear segments with a constant penetration rate,which implies a zone of homogenous geomaterial with different weathering grades.The effect from fluctuation of the applied pressures is evaluated quantitatively.Detailed analyses are presented for accurately assess and verify the underground profiling and strength in weathered granitic rock,which provided the basis of using DPM method to confidently assess drilling measurements to interpret the subsurface profile in real time.
基金Supported by the National High Technology Research and Development Program of China (863 Program) under Grant No.2006AA09A104
文摘The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process flow that is aimed at improving efficiency, while giving attention to stability and safety at the same time. The paper describes the process flow of dual drilling centers and a hierarchical division of rigs based on the different modes of transportation of various drilling support systems. The general layout-centripetal overall arrangement spatially was determined based on drilling efficiency. We derived our modules according to drilling functionality; the modules became our basic layout units. We applied different layout algorithm to mark out the upper and lower decks. That is, the upper deck was designed based on the lowest transportation cost while the lower deck's calculations were based on the best-fit scope. Storage configurations in columns and pontoons were also considered for the layout design. Finally the center of gravity was taken into consideration and the general layout was adjusted accordingly, to result in an optimal center of gravity. The methodology of the general layout can provide a reference for implementation of domestic designs of semi-submersible rigs.
基金The paper was partially supported by grants from the Research Grant Council,Hong Kong Special Administrative Region,P.R.China(Project Nos.HKU 17207518 and R5037-18).
文摘Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from two adjacent vertical drillholes that were formed with the same hydraulic rotary drilling machine and bit.The analysis of original factual data is presented to obtain the constant drilling speed during net drilling process.According to the factual data along two adjacent drillholes,the digitalization results respectively include 461 linear zones and 210 linear zones with their constant drilling speeds and associated drilling parameters.The digitalization results can accurately present the spatial distributions and interface boundaries of drilled geomaterials and the results are consistent with the paralleled site loggings.The weighted average drilling speeds from 2.335 m/min to 0.044 m/min represent 13 types of drilled geomaterials from soils to hard rocks.The quantitative relation between drilling speed and strength property is provided.The digitalization results can statistically profile the basic strength quality grades of III to VI from soils to hard rocks.The thickness distributions of four strength quality grades are presented for each individual type of geomaterials along two drillholes.In total,50.2%of geomaterials from drillhole A are grade IV and 57.4%of geomaterials from drillhole B are grade III.The digitalization results can offer an accurate and cost-effective tool to quantitatively describe the spatial distribution and in situ strength profile of drilled geomaterials in the current drilling projects.
基金the Hainan Provincial Natural Science Foundation of China(No.2018CXTD346)the Sanya Yazhou Bay Science and Technology City Program(No.SKJC-2020-01-009)+1 种基金the Hainan Provincial Major Science and Technology Program of China(Nos.521 MS069,ZDKJ202019)the National Key Research and Development Program of China(No.2019YFC0312301)。
文摘Shallow gas is considered one of the most serious geological hazards in deepwater drilling because it has the characteristics of suddenness and is difficult to deal with.To perform a quantitative evaluation of shallow gas risk during deepwater drilling,a numerical model for calculating gas invasion volume is established based on gas-water two-phase flow theory.The model considers the effect of the dynamic drilling process,and the influencing factors which affect the gas invasion volume are analyzed.Results indicate that the gas invasion rate and accumulated gas invasion volume increase with increasing bottom-hole pressure difference.A linear relationship exists between gas invasion volume and bottom-hole pressure difference.The duration of gas invasion increases as the shallow gas zone thickness increases,and the accumulated gas invasion volume grows as shallow gas zone thickness increases.The increase in formation permeability,water depth,and rate of penetration will enhance the gas invasion rate.However,these three factors can hardly affect the accumulated gas invasion volume.The gas flow rate increases significantly with increasing burial depth of shallow gas.On the basis of influencing factor analysis,a series of methods that consider different risk levels is proposed to control shallow gas,which can provide a reference for the prevention of shallow gas disasters during deepwater drilling.
基金the Research Grant Council of HKSAP Government and Hong Kong Jockey Club Charities Trust(No.HKU7005/01E).
文摘The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology formations, geohazards, underground water, and boundary of orebody. To expand the further use and test the accuracy in identification of formation, an R-20 rotary-hydraulic drill rig was instrumented with a digital drilling process monitoring system (DPM) for drilling in an intricate decomposed granite site. In this test ground, the boreholes revealed that the weathered granite alternately changes between moderate and strong. The qualitative and quantitative analysis of the penetrating parameters, indicates the effective thrust force, rotary speed, flushing pressure, penetrating rate, and displacement of the bit fluctuate at ground interfaces. It shows that the parameters get a good response with the change of rock strength at the interfaces, which can reveal the change of the intricate granite formation. Besides, a variable-slope method has been established, for identification of dominative and subsidiary interfaces in the granite site. The result from a t-test shows that the confi- dence of the instrumented drilling system in identification of the geotechnical interfaces is up to 99%.
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,PR China(Project Nos.HKU 17207518 and R5037-18).
文摘This study purposes an in situ testing method on quality assessment of soil improvement.Factual drilling data includes the spatial distribution and in situ strength of untreated and treated soil along three different drillholes measured by on-site drilling monitoring method.These factual drilling data can characterize the degree of soil improvement by penetration injection with permeable polyurethane.Result from on-site drilling monitoring shows that the linear zones represent constant drilling speeds shown in the plot of drill bit advancement vs.net drilling time,which indicates the spatial distributions of soil profile.The soil profile at the study site is composed of four layers,which includes fill,untreated silty clay,treated silty clay,and mucky soil.The results of soil profile are verified by the parallel site loggings.The constant drilling speeds profile the coring-resistant strength of drilled soils.By comparing with the untreated silty clay,the constant drilling speeds of the treated silty clay have been decreased by 13.0-62.8%.Two drilling-speed-based indices of 61.2%and 65.6%are proposed to assess the decreased average drilling speed and the increased in situ strength of treated silty clay.Laboratory tests,i.e.uniaxial compressive strength(UCS)test,have been performed with core sample to investigate and characterize in situ strength by comparing that with drilling speeds.Results show that the average predicted strengths of treated silty clay are 2.4-6.9 times higher than the average measured strength of untreated silty clay.The UCS-based indices of 374.5%and 344.2%verified the quality assessment(QA)results by this new in situ method.This method provides a cost-effective tool for quality assessment of soil improvement by utilizing the digital drilling data.
基金This work is financially supported by the Research Grant Council of HKSAR Government and Hong Kong Jockey Club CharitiesTrust.
文摘A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in real time during normal subsurface investigation. The identification method for dominative and subsidiary interfaces has been established. The study reveals that the monitored drilling parameters are dependent on geotechnical materials and can be further applied to characterize ground interfaces. The t-test between manual logging and DPM logging has been carried out. The results show that the DPM has high accuracy in interfaces detection and well agreement with the manual logging. The findings show that the device and data analysis method are of potential application in subsurface drilling exploration in weathered granites. It also seems to have prospective uses in the determination of orebody boundary as well as in the detection of geohazards.