Taking Rain City District of Ya’an for example, this paper based on ComGIS (Component Object Model Geographic Information System) platform takes comprehensive and systematic detection on the exposure dose of chemical...Taking Rain City District of Ya’an for example, this paper based on ComGIS (Component Object Model Geographic Information System) platform takes comprehensive and systematic detection on the exposure dose of chemical carcinogens and non-carcinogens from drinking water sources in this region and discusses health risk assessment of single factor and the whole health risk assessment. As, Hg, Cr, Pb, Cd and fluorides in some drinking water sources of Rain City District are analyzed according to Standards For Drinking Wa-ter Quality (GB5749-2006). A health risk assessment model called USEPA is also applied to drinking water health risk assessment and management countermeasure is proposed. The results show that the greatest health risk for individual person per year is caused by Cr(VI). The health risk of carcinogens is much higher than that of non-carcinogens: the greatest risk value due to non-carcinogen pollutants is caused by fluoride (F), achieving 1.05×10-8/a. The ranking of risk values due to non-carcinogen pollutants by drinking water is Pb>fluoride (F)>Hg, within Pb accounting for 44.77%, fluo-ride (F) accounting for 34.30% and Hg accounting for 20.92%. The average individual carcinogenesis annual risk of Cr(VI) is the greatest, achieving 8.91×10-4/a. The ranking of risk value due to chemical carcinogen by rural drinking water of Ya’an is Cr6+>As>Cd, within Cr6+ accounting for 91.12%, As accounting for 5.89% and Cd accounting for 3.00%. Based on this, the strategy and measures of the health risk management are put forward. This study has worked efficiently in practice. Compared with the same kind of methods which have been found, the paper has the outstanding results for the health risk assessment of the rural drinking water safety.展开更多
According to characteristic index of spatial-temporal variability of rural drinking water safety in Ya’an City of Sichuan, China, such as water quantity, water quality, convenience degree and guaranteed rate, etc., t...According to characteristic index of spatial-temporal variability of rural drinking water safety in Ya’an City of Sichuan, China, such as water quantity, water quality, convenience degree and guaranteed rate, etc., this study elaborated the basic framework, model’s methodology structure in early warning system of rural drinking water safety on the basis of ComGIS and initially designed information collection, search and re-trieval, evaluation and analysis of factors, dynamic prediction and dynamic early-warning and functions of guidance and management in this system. The design of this system provided scientific basis to grasp the state of rural drinking water safety timely, release early warning information and properly take necessary control measures, etc. The evaluation results showed that the overall trend was getting better. It proved that the rising pressure value and response value were main reasons which caused the rising evaluation value of rural drinking water safety.展开更多
In this study, based on the analysis of the catastrophic risk of rural drinking water, with the representative villages in Ya’an as study objects and setting the four evaluation standards: water quality, water quanti...In this study, based on the analysis of the catastrophic risk of rural drinking water, with the representative villages in Ya’an as study objects and setting the four evaluation standards: water quality, water quantity, the Guarantee Probability for water Supply and the Convenience Level of the Access to Water Supply as the ba- sic framework, a Rural Drinking Water Safety Assessment was developed (RDWSA). Research showed that Catastrophe Theory was applicable in the RDWSA. Adding RDWSA based on Catastrophe Theory to the supportive system for decision-making in Ecological Hydrographic Management Decision Support System of Ya’an helped obtain the rank and results of RDWSE by the automatic calculation of programs, which could assist the risk assessment and risk management associated with rural drinking water in Ya’an.展开更多
Agricultural non-point source pollution has become the main part of water pollution prevention and control in China. This paper made a brief introduction to the causes and hazards of agricultural non-point source poll...Agricultural non-point source pollution has become the main part of water pollution prevention and control in China. This paper made a brief introduction to the causes and hazards of agricultural non-point source pollution and the current situation of agricultural non-point source pollution prevention and control in China. In view of the serious agricultural non-point source pollution in water environment of Guangxi and the difference in quality of drinking water between urban and rural areas,it came up with recommendations for strengthening agricultural non-point source pollution prevention and control from scientific distribution,linked operation and maintenance,popular science education,and legal system construction,to guarantee safe and healthy drinking water in rural areas.展开更多
As further promotion of the rural drinking water safety project in whole country, small villages in vast countryside have been or will be equipped with safety drinking water project. We analyzed necessity of the rural...As further promotion of the rural drinking water safety project in whole country, small villages in vast countryside have been or will be equipped with safety drinking water project. We analyzed necessity of the rural drinking water disinfection, discussed disinfection method suitable for rural drinking water characteristics, and put forward disinfection schemes for different water supply sources.展开更多
This paper briefly introduced the evolution of purification technology for drinking water over time. After description of the 1st generation processes in the beginning of the 20th century - conventional processes and ...This paper briefly introduced the evolution of purification technology for drinking water over time. After description of the 1st generation processes in the beginning of the 20th century - conventional processes and the 2nd generation processes in 1970s - advanced treatment processes, a tertiary processes - UF (ultrafiltration) based on integrated processes was proposed. Moreover, reaction measures (dosing variety of regents for different contaminants) for urban source water emergencies were illustrated in brief. A new technology of KMnO4 and potassium permanganate composite (PPC) for drinking water purification which was developed by Harbin Institute of Technology (HIT) was concisely introduced.展开更多
Water quality in China is becoming a severe challenge for agriculture and food safety, and it might also impact health of population via agriculture and food. Thus, it is causing widespread concern. Based on extensive...Water quality in China is becoming a severe challenge for agriculture and food safety, and it might also impact health of population via agriculture and food. Thus, it is causing widespread concern. Based on extensive literatures review and data mining, current situation of water pollution in China and its effects on food safety were analyzed. The 2nd National Water Resource Survey in China show that the surface water all over the country was under slight pollution and about 60% of groundwater is polluted. Drinking water quality is basically guaranteed in urban area but it is worrisome in rural areas. In addition, China is the largest consumer of fertilizer and pesticide in the world and the amounts of application still show increasing trends. Fertilizers and pesticides are the most important sources of pollution, which affect human health as persistent organic pollutants and environmental endocrine disruptors. Eutrophication of surface water and nitrate pollution of groundwater are serious threats to drinking water safety. Sewage irrigation is becoming a pollution source to China's water and land because of lacking of effective regulations. Although, with the advance in technology and management level, control of nitrogen and phosphorus emissions and reducing water pollution is still a major challenge for China.展开更多
Rural drinking water safety is a growing concern in China. This study investigated the health risk of pollution of groundwater for the drinking water supply in Mingshan County, Ya'an City, in Sichuan Province, China,...Rural drinking water safety is a growing concern in China. This study investigated the health risk of pollution of groundwater for the drinking water supply in Mingshan County, Ya'an City, in Sichuan Province, China, using 46 samples from the years 1991 to 2010. Carcinogenic, non-carcinogenic, and total risks were assessed by the model recommended by the United States Environmental Protection Agency (U.S. EPA). Thematic maps of the risks caused by single and multiple factors were generated from inverse distance weighting interpolation (IDW) and the geostatistical analysis functions of ArcGIS. The results show that the carcinogenic risks caused by chemicals in groundwater for drinking water supply are low, within the acceptable interval for risk management. However, non-carcinogenic risks are high and the number of sampling sites with risk values exceeding the standards amounted to 29. Non-carcinogenic risks of Cr6+, nitrate, fluoride, and Fe at sites 43, 46, 50, 64, 67, and 74 were the sources that caused high total health risk. This study reveals the risk level of groundwater quality and orders of treatment of pollutants, and provides a scientific basis for groundwater management in this area.展开更多
Several toxic metals, commonly present in drinking water, are believed to play important roles in the development of cancerous tumors. Although the US Safe Drinking Water Act requires drinking water to meet health sta...Several toxic metals, commonly present in drinking water, are believed to play important roles in the development of cancerous tumors. Although the US Safe Drinking Water Act requires drinking water to meet health standards set by the Environmental Protection Agency, violations occur regularly. In this study, we have investigated the role of the two predominant toxic heavy metals identified in the drinking water sources in Tennessee: copper and lead. We have analyzed the levels of copper and lead, as well as the total water hardness among different counties of Tennessee, with different socioeconomic backgrounds. We determined that the effects of lead and copper in drinking water were random, although counties with typically lower average household incomes typically had higher levels of the metals. The contaminant levels were found to remain below the threshold established by the Environmental Protection Agency and the State of Tennessee. Water from the Cumberland River was harder than water obtained from other rivers in Tennessee. Furthermore, the total hardness of water did not correlate with the average household income of the various counties.展开更多
The safety of water is usually determined by comparing its quality to recommended standards. The objective of this work was to determine whether the water supplied on Njala Campus is safe for drinking. The quality par...The safety of water is usually determined by comparing its quality to recommended standards. The objective of this work was to determine whether the water supplied on Njala Campus is safe for drinking. The quality parameters investigated include coliform bacteria, turbidity, conductivity, total dissolved solids and nitrates. Samples were stored in a cooler with ice and transported to the laboratory within 30 minutes of collection. A checklist of questions to know the perception of residents was administered. According to the physical and biological results, the water is not safe for consumption. The turbidity and microbial counts were too high in most samples both in the wet and dry seasons. Additionally, over 80% of the respondents did not trust the water supply system. Most of them treat the supplied water by either boiling or disinfection before use. Most respondents complained of water-borne diseases but were not clear whether it is related to the water supplied. The chemical parameters, however, were acceptable: nitrate levels were low. In conclusion, the water is not safe for consumption as far as the physical and biological parameters are concerned. The campus water supply system needs improvement in terms of conveying raw and finished water, filter optimization, and satisfying the chlorine demand.展开更多
The Gaza Strip is one of the most densely populated areas in the world, 4505 people per km2 and the only source of water is represent by groundwater. The water quality in Gaza is very poor and the groundwater is affec...The Gaza Strip is one of the most densely populated areas in the world, 4505 people per km2 and the only source of water is represent by groundwater. The water quality in Gaza is very poor and the groundwater is affected by many different contaminants sources including soil/water interaction in the unsaturated zone due to recharge and return flows, mobilization of deep brines, sea water intrusion or upcoming and disposal of domestic and industrial wastes into the aquifer. Previous reports on the water quality in Gaza discussed the high levels of major ions (especially of chloride, nitrate and fluoride) in the drinking water. Moreover, little or no information is available for trace elements in the groundwater of the Gaza Strip. The sources of trace elements in groundwater could be natural and anthropogenic. 58 wells were sampled during July 2010, and were analyzed major ions and trace elements to check if the water quality is improving from the previous report. This study has revealed that no groundwater in Gaza Strip meets all WHO drinking water standards. The contaminants which affected the Gaza Strip are of different types and they originate from different sources. The environmental conditions are no safe for the population and some actions to improve the groundwater conditions are necessary to safeguard the population.展开更多
To scientifically and effectively conduct comprehensive control of water sources to achieve water safety,the importance,main steps and plan of comprehensive control of ecological environment in water sources were anal...To scientifically and effectively conduct comprehensive control of water sources to achieve water safety,the importance,main steps and plan of comprehensive control of ecological environment in water sources were analyzed on the basis of analyzing the development and protection process of foreign water sources.The results show that for the comprehensive control of water sources,it is needed to pay attention to the accurate grasp of the current environmental quality of water sources and carefully analyze the problems in the ecological environment of water sources.Besides,it is necessary to ensure the water quality and quantity of sources,focus on the implementation of environmental remediation and ecological restoration,implement regional protection of water sources,and combine engineering and non-engineering measures to take comprehensive control of environmental problems.展开更多
While plastic water bottles are known to potentially release various volatile organic compounds(VOCs)when exposed to light,existing knowledge in this field remains limited.In this study,we systematically examined the ...While plastic water bottles are known to potentially release various volatile organic compounds(VOCs)when exposed to light,existing knowledge in this field remains limited.In this study,we systematically examined the composition,yield,and toxicity of VOCs released from six plastic containers obtained from different continents under UV-A and solar irradiation.After light exposure,all containers released VOCs,including alkanes,alkenes,alcohols,aldehydes,carboxylic acids,aromatics,etc.The 1#,3#,4#,5#,and 6#containers exhibited 35,32,19,24 and 37 species of VOCs,respectively.Specifically,the 2#container released 28 and 32 series of VOCs after 1-day(short-term)and 7-day(long-term)UV-A irradiation,respectively,compared to 30 and 32 species under solar irradiation.Over half of the VOCs identified were oxidized compounds alongside various short-chain hydrocarbons.Significant differences in VOC compositions among the containers were observed,potentially originating from light-induced aging and degradation of the polyethylene terephthalate structure in the containers.Toxicological predictions unveiled distinctive toxic characteristics of VOCs from each container.For example,among the various VOCs produced by the 2#container,straight-chain alkanes like n-hexadecane(544-76-3)were identified as the most toxic compounds.After long-term irradiation,the yield of these toxic VOCs from the 2#container ranged from 0.11 ng/g to 0.79 ng/g.Considering the small mass of a single bottle,the volatilization of VOCs from an individual container would be insignificant.Even after prolonged exposure to light,the potential health risks associated with inhaling VOCs when opening and drinking bottled water appear manageable.展开更多
The continuously deteriorating quality of source water is threatening the safety of drinking water in China.Various efforts have been made to update water treatment processes to decrease the pollution problems of drin...The continuously deteriorating quality of source water is threatening the safety of drinking water in China.Various efforts have been made to update water treatment processes to decrease the pollution problems of drinking water,such as protection of drinking water sources,enhance-ment of conventional treatment processes,and development of new or advanced treatment technologies.This paper reviews a variety of protection and remediation methods for drinking water sources,development and application of drinking water treatment technologies,new technologies for special pollutants removal from groundwater,and the latest research progress on water distribution systems in China.展开更多
The qualified finished water from water treatment plants(WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems(DWDSs), which affected tap water quality seriously. Th...The qualified finished water from water treatment plants(WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems(DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety.展开更多
文摘Taking Rain City District of Ya’an for example, this paper based on ComGIS (Component Object Model Geographic Information System) platform takes comprehensive and systematic detection on the exposure dose of chemical carcinogens and non-carcinogens from drinking water sources in this region and discusses health risk assessment of single factor and the whole health risk assessment. As, Hg, Cr, Pb, Cd and fluorides in some drinking water sources of Rain City District are analyzed according to Standards For Drinking Wa-ter Quality (GB5749-2006). A health risk assessment model called USEPA is also applied to drinking water health risk assessment and management countermeasure is proposed. The results show that the greatest health risk for individual person per year is caused by Cr(VI). The health risk of carcinogens is much higher than that of non-carcinogens: the greatest risk value due to non-carcinogen pollutants is caused by fluoride (F), achieving 1.05×10-8/a. The ranking of risk values due to non-carcinogen pollutants by drinking water is Pb>fluoride (F)>Hg, within Pb accounting for 44.77%, fluo-ride (F) accounting for 34.30% and Hg accounting for 20.92%. The average individual carcinogenesis annual risk of Cr(VI) is the greatest, achieving 8.91×10-4/a. The ranking of risk value due to chemical carcinogen by rural drinking water of Ya’an is Cr6+>As>Cd, within Cr6+ accounting for 91.12%, As accounting for 5.89% and Cd accounting for 3.00%. Based on this, the strategy and measures of the health risk management are put forward. This study has worked efficiently in practice. Compared with the same kind of methods which have been found, the paper has the outstanding results for the health risk assessment of the rural drinking water safety.
文摘According to characteristic index of spatial-temporal variability of rural drinking water safety in Ya’an City of Sichuan, China, such as water quantity, water quality, convenience degree and guaranteed rate, etc., this study elaborated the basic framework, model’s methodology structure in early warning system of rural drinking water safety on the basis of ComGIS and initially designed information collection, search and re-trieval, evaluation and analysis of factors, dynamic prediction and dynamic early-warning and functions of guidance and management in this system. The design of this system provided scientific basis to grasp the state of rural drinking water safety timely, release early warning information and properly take necessary control measures, etc. The evaluation results showed that the overall trend was getting better. It proved that the rising pressure value and response value were main reasons which caused the rising evaluation value of rural drinking water safety.
文摘In this study, based on the analysis of the catastrophic risk of rural drinking water, with the representative villages in Ya’an as study objects and setting the four evaluation standards: water quality, water quantity, the Guarantee Probability for water Supply and the Convenience Level of the Access to Water Supply as the ba- sic framework, a Rural Drinking Water Safety Assessment was developed (RDWSA). Research showed that Catastrophe Theory was applicable in the RDWSA. Adding RDWSA based on Catastrophe Theory to the supportive system for decision-making in Ecological Hydrographic Management Decision Support System of Ya’an helped obtain the rank and results of RDWSE by the automatic calculation of programs, which could assist the risk assessment and risk management associated with rural drinking water in Ya’an.
基金Supported by State Key Research and Development Program of Ministry of Science and Technology"Soil Passivation-Physiological Barrier-Enrichment and Removal Technology in Paddy Field with Mild Cadmium Contamination"(2016YED0800705-01)Key Research and Development Program of Guangxi"Research and Demonstration of Remediation Technology in Cadmium and Lead Polluted Paddy Field"(Gui Ke AB16380084)+2 种基金Key Agricultural Science and Technology Project of Guangxi"Integration,Research and Development of Heavy Metal Pollution Prevention Technology for Paddy Field"(201528)Scientific Research and Technological Development Program Project of Nanning City"Research and Demonstration of Integrated Ecological Restoration Technology for Heavy Metal Cadmium Polluted Paddy Field in Nanning"(20162105)Scientific and Technological Service Ability and Party Informationization Construction of Ecological Comprehensive Demonstration Village in Jianning No.1 Team of Xixiangtang District of Nanning(20152054-13)
文摘Agricultural non-point source pollution has become the main part of water pollution prevention and control in China. This paper made a brief introduction to the causes and hazards of agricultural non-point source pollution and the current situation of agricultural non-point source pollution prevention and control in China. In view of the serious agricultural non-point source pollution in water environment of Guangxi and the difference in quality of drinking water between urban and rural areas,it came up with recommendations for strengthening agricultural non-point source pollution prevention and control from scientific distribution,linked operation and maintenance,popular science education,and legal system construction,to guarantee safe and healthy drinking water in rural areas.
基金Supported by Science and Technology Plan Project in Nanning City,China(20131064)
文摘As further promotion of the rural drinking water safety project in whole country, small villages in vast countryside have been or will be equipped with safety drinking water project. We analyzed necessity of the rural drinking water disinfection, discussed disinfection method suitable for rural drinking water characteristics, and put forward disinfection schemes for different water supply sources.
文摘This paper briefly introduced the evolution of purification technology for drinking water over time. After description of the 1st generation processes in the beginning of the 20th century - conventional processes and the 2nd generation processes in 1970s - advanced treatment processes, a tertiary processes - UF (ultrafiltration) based on integrated processes was proposed. Moreover, reaction measures (dosing variety of regents for different contaminants) for urban source water emergencies were illustrated in brief. A new technology of KMnO4 and potassium permanganate composite (PPC) for drinking water purification which was developed by Harbin Institute of Technology (HIT) was concisely introduced.
基金the Shenzhen Science and Technology Projects of China (JCYJ20140417144423187 and JCYJ20130331145022339)Shenzhen Engineering Laboratory for Water Desalinization with Renewable Energy, China
文摘Water quality in China is becoming a severe challenge for agriculture and food safety, and it might also impact health of population via agriculture and food. Thus, it is causing widespread concern. Based on extensive literatures review and data mining, current situation of water pollution in China and its effects on food safety were analyzed. The 2nd National Water Resource Survey in China show that the surface water all over the country was under slight pollution and about 60% of groundwater is polluted. Drinking water quality is basically guaranteed in urban area but it is worrisome in rural areas. In addition, China is the largest consumer of fertilizer and pesticide in the world and the amounts of application still show increasing trends. Fertilizers and pesticides are the most important sources of pollution, which affect human health as persistent organic pollutants and environmental endocrine disruptors. Eutrophication of surface water and nitrate pollution of groundwater are serious threats to drinking water safety. Sewage irrigation is becoming a pollution source to China's water and land because of lacking of effective regulations. Although, with the advance in technology and management level, control of nitrogen and phosphorus emissions and reducing water pollution is still a major challenge for China.
基金supported by the Key Project Fund of the Sichuan Education Department (Grant No. 09ZA063),the Education Reform Project Fund of the Sichuan Education Department (Grant No. P09150)the National Innovative Project for College Students (Grant No. 00509204)the Youth Science and Technology Innovation Fund of Sichuan Agricultural University (Grant No. 00530300),the Talent Introduction Fund of Sichuan Agricultural University (Grant No. 00530301),and the Double-Support Plan of Sichuan Agricultural University (Grant No. 00570103)
文摘Rural drinking water safety is a growing concern in China. This study investigated the health risk of pollution of groundwater for the drinking water supply in Mingshan County, Ya'an City, in Sichuan Province, China, using 46 samples from the years 1991 to 2010. Carcinogenic, non-carcinogenic, and total risks were assessed by the model recommended by the United States Environmental Protection Agency (U.S. EPA). Thematic maps of the risks caused by single and multiple factors were generated from inverse distance weighting interpolation (IDW) and the geostatistical analysis functions of ArcGIS. The results show that the carcinogenic risks caused by chemicals in groundwater for drinking water supply are low, within the acceptable interval for risk management. However, non-carcinogenic risks are high and the number of sampling sites with risk values exceeding the standards amounted to 29. Non-carcinogenic risks of Cr6+, nitrate, fluoride, and Fe at sites 43, 46, 50, 64, 67, and 74 were the sources that caused high total health risk. This study reveals the risk level of groundwater quality and orders of treatment of pollutants, and provides a scientific basis for groundwater management in this area.
文摘Several toxic metals, commonly present in drinking water, are believed to play important roles in the development of cancerous tumors. Although the US Safe Drinking Water Act requires drinking water to meet health standards set by the Environmental Protection Agency, violations occur regularly. In this study, we have investigated the role of the two predominant toxic heavy metals identified in the drinking water sources in Tennessee: copper and lead. We have analyzed the levels of copper and lead, as well as the total water hardness among different counties of Tennessee, with different socioeconomic backgrounds. We determined that the effects of lead and copper in drinking water were random, although counties with typically lower average household incomes typically had higher levels of the metals. The contaminant levels were found to remain below the threshold established by the Environmental Protection Agency and the State of Tennessee. Water from the Cumberland River was harder than water obtained from other rivers in Tennessee. Furthermore, the total hardness of water did not correlate with the average household income of the various counties.
文摘The safety of water is usually determined by comparing its quality to recommended standards. The objective of this work was to determine whether the water supplied on Njala Campus is safe for drinking. The quality parameters investigated include coliform bacteria, turbidity, conductivity, total dissolved solids and nitrates. Samples were stored in a cooler with ice and transported to the laboratory within 30 minutes of collection. A checklist of questions to know the perception of residents was administered. According to the physical and biological results, the water is not safe for consumption. The turbidity and microbial counts were too high in most samples both in the wet and dry seasons. Additionally, over 80% of the respondents did not trust the water supply system. Most of them treat the supplied water by either boiling or disinfection before use. Most respondents complained of water-borne diseases but were not clear whether it is related to the water supplied. The chemical parameters, however, were acceptable: nitrate levels were low. In conclusion, the water is not safe for consumption as far as the physical and biological parameters are concerned. The campus water supply system needs improvement in terms of conveying raw and finished water, filter optimization, and satisfying the chlorine demand.
文摘The Gaza Strip is one of the most densely populated areas in the world, 4505 people per km2 and the only source of water is represent by groundwater. The water quality in Gaza is very poor and the groundwater is affected by many different contaminants sources including soil/water interaction in the unsaturated zone due to recharge and return flows, mobilization of deep brines, sea water intrusion or upcoming and disposal of domestic and industrial wastes into the aquifer. Previous reports on the water quality in Gaza discussed the high levels of major ions (especially of chloride, nitrate and fluoride) in the drinking water. Moreover, little or no information is available for trace elements in the groundwater of the Gaza Strip. The sources of trace elements in groundwater could be natural and anthropogenic. 58 wells were sampled during July 2010, and were analyzed major ions and trace elements to check if the water quality is improving from the previous report. This study has revealed that no groundwater in Gaza Strip meets all WHO drinking water standards. The contaminants which affected the Gaza Strip are of different types and they originate from different sources. The environmental conditions are no safe for the population and some actions to improve the groundwater conditions are necessary to safeguard the population.
基金Supported by the Innovation and Entrepreneurship Training Program for College Students of Shaanxi Province in 2022(S202211396028)Innovation and Entrepreneurship Training Program for College Students of Shaanxi Province in 2021(S202111396068).
文摘To scientifically and effectively conduct comprehensive control of water sources to achieve water safety,the importance,main steps and plan of comprehensive control of ecological environment in water sources were analyzed on the basis of analyzing the development and protection process of foreign water sources.The results show that for the comprehensive control of water sources,it is needed to pay attention to the accurate grasp of the current environmental quality of water sources and carefully analyze the problems in the ecological environment of water sources.Besides,it is necessary to ensure the water quality and quantity of sources,focus on the implementation of environmental remediation and ecological restoration,implement regional protection of water sources,and combine engineering and non-engineering measures to take comprehensive control of environmental problems.
基金supported by the National Natural Science Foundation of China(Grant No.42377373)Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2021SP208).
文摘While plastic water bottles are known to potentially release various volatile organic compounds(VOCs)when exposed to light,existing knowledge in this field remains limited.In this study,we systematically examined the composition,yield,and toxicity of VOCs released from six plastic containers obtained from different continents under UV-A and solar irradiation.After light exposure,all containers released VOCs,including alkanes,alkenes,alcohols,aldehydes,carboxylic acids,aromatics,etc.The 1#,3#,4#,5#,and 6#containers exhibited 35,32,19,24 and 37 species of VOCs,respectively.Specifically,the 2#container released 28 and 32 series of VOCs after 1-day(short-term)and 7-day(long-term)UV-A irradiation,respectively,compared to 30 and 32 species under solar irradiation.Over half of the VOCs identified were oxidized compounds alongside various short-chain hydrocarbons.Significant differences in VOC compositions among the containers were observed,potentially originating from light-induced aging and degradation of the polyethylene terephthalate structure in the containers.Toxicological predictions unveiled distinctive toxic characteristics of VOCs from each container.For example,among the various VOCs produced by the 2#container,straight-chain alkanes like n-hexadecane(544-76-3)were identified as the most toxic compounds.After long-term irradiation,the yield of these toxic VOCs from the 2#container ranged from 0.11 ng/g to 0.79 ng/g.Considering the small mass of a single bottle,the volatilization of VOCs from an individual container would be insignificant.Even after prolonged exposure to light,the potential health risks associated with inhaling VOCs when opening and drinking bottled water appear manageable.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50538090).
文摘The continuously deteriorating quality of source water is threatening the safety of drinking water in China.Various efforts have been made to update water treatment processes to decrease the pollution problems of drinking water,such as protection of drinking water sources,enhance-ment of conventional treatment processes,and development of new or advanced treatment technologies.This paper reviews a variety of protection and remediation methods for drinking water sources,development and application of drinking water treatment technologies,new technologies for special pollutants removal from groundwater,and the latest research progress on water distribution systems in China.
基金supported by the Shandong Provincial Key Research and Development Program- Major Scientific and Technological Innovation Project (No. 2020CXGC011406)the R&D project of Suzhou Water Resource and Management (No. 2020011)the National Water Major Project (Nos. 2018ZX07111-006 , 2012ZX07404-002 , 2012ZX07403-001)。
文摘The qualified finished water from water treatment plants(WTPs) may become discolored and deteriorated during transportation in drinking water distribution systems(DWDSs), which affected tap water quality seriously. This water stability problem often occurs due to pipe corrosion and the destabilization of corrosion scales. This paper provides a comprehensive review of pipe corrosion in DWDSs, including corrosion process, corrosion scale formation, influencing factors and monitoring technologies utilized in DWDSs. In terms of corrosion process, corrosion occurrence, development mechanisms, currently applied assays, and indices used to determine the corrosion possibility are summarized, as well as the chemical and bacterial influences. In terms of scale formation, explanations for the nature of corrosion and scale formation mechanisms are discussed and its typical multilayered structure is illustrated. Furthermore, the influences of water quality and microbial activity on scale transformation are comprehensively discussed. Corrosion-related bacteria at the genus level and their associated corrosion mechanism are also summarized. This review helps deepen the current understanding of pipe corrosion and scale formation in DWDSs, providing guidance for water supply utilities to ensure effective measures to maintain water quality stability and guarantee drinking water safety.