Based on field detected water quality data, the distribution characteristics of different forms of nitrogen in a reservoir as drinking water source in Dongguan, which locates at the Pearl River Delta of China, have be...Based on field detected water quality data, the distribution characteristics of different forms of nitrogen in a reservoir as drinking water source in Dongguan, which locates at the Pearl River Delta of China, have been analyzed in order to provide theoretical bases for prevention and reduction of eutrophication. The analyzed results show that nitrogen forms in the influent area of the reservoir are given priority to ammonia nitrogen and nitrate nitrogen, whose proportion is more than 45% respectively, and this is probably caused by the pollution of inflow water quality;but in the effluent area, the forms are given priority to nitrate nitrogen, whose proportion is as high as 96% and above;also the proportion of ammonia nitrogen drops by more than 80% during the process from the influent area to the effluent area, and this shows that the natural process of nitrification and denitrification can be well accomplished in the reservoir. We recommend here that to reduce the input amount of ammonia nitrogen and organic nitrogen into the reservoir is the most efficient way to prevent or mitigate eutrophication of water body.展开更多
To meet the Sustainable Development Goal(SDG)target 6.1,China has undertaken significant initiatives to address the uneven distribution of water resources and to enhance water quality.Since 2000,China has invested hea...To meet the Sustainable Development Goal(SDG)target 6.1,China has undertaken significant initiatives to address the uneven distribution of water resources and to enhance water quality.Since 2000,China has invested heavily in the water infrastructure of numerous reservoirs,with a total storage capacity increase of 4.704×1011m3(an increase of 90.8%).These reservoirs have significantly enhanced the available freshwater resources for drinking water.Concurrently,efforts to improve water quality in lakes and reservoirs,facilitated by nationwide water quality monitoring,have been successful.As a result,an increasing lakes and reservoirs are designated as centralized drinking water sources(CDWSs)in China.Among the 3441 CDWSs across all provinces,40.8%are sourced from lakes and reservoirs,32.6%from rivers,and 26.6%from groundwater in 2023.Notably,from 2016 to 2023,the percentage of lakes and reservoirs categorized as CDWSs has increased consistently across all 29 provinces.This progress has enabled561.4 million urban residents to access improved drinking water sources in 2022,compared to 303.4 million in 2004.Our findings underscore the pivotal role of water infrastructure construction and water quality improvement jointly promoting lakes and reservoirs as vital drinking water sources.Nevertheless,the nationwide occurrence of algal blooms has surged by 113.7%from the 2000s to the 2010s,which is a considerable challenge to drinking water safety.Fortunately,algal blooms have been markedly alleviated in past four years.However,it is still crucial to acknowledge that lakes and reservoirs face the challenges of algal blooms,and associated toxic microcystin and odor compounds.展开更多
Drinking water is closely related to human health,disease and mortality,and contaminated drinking water causes 485,000 deaths from diarrhea each year worldwide.China has been facing increasingly severe water scarcity ...Drinking water is closely related to human health,disease and mortality,and contaminated drinking water causes 485,000 deaths from diarrhea each year worldwide.China has been facing increasingly severe water scarcity due to both water shortages and poor water quality.Ensuring safe and clean drinking water is a great challenge and top priority,especially for China with 1.4 billion people.In China,more than 4000 centralized drinking water sources including rivers,lakes and reservoirs,and groundwater have been established to serve urban residents.However,there is little knowledge on the percentage,serving population and water quality of three centralized drinking water source types.We collected nationwide centralized drinking water sources data and serving population data covering 395 prefecture-level and county-level cities and water quality data in the two most populous provinces(Guangdong and Shandong)to examine their contribution and importance.Geographically,the drinking water source types can be classified into three clear regions exhibiting apparent differences in the respective contributions of rivers,lakes and reservoirs,and groundwater.We further found that overall,lakes and reservoirs account for 40.6%of the centralized drinking water sources vs.river(30.8%)and groundwater(28.6%)in China.Lakes and reservoirs are particularly important in the densely populated eastern region,where they are used as drinking water sources by 51.0%of the population(318 million).Moreover,the contribution to the drinking water supply from lakes and reservoirs is increasing due to their better water quality and many cross-regional water transfer projects.These results will be useful for the government to improve and optimize the establishment of centralized drinking water sources,which provide safe and clean drinking water in China to safeguard people's lives and health and realize sustainable development goals.展开更多
The Qiandao Lake Area (QLA) is of great significance in terms of drinking water supply in East Coast China as well as a nationally renowned tourist attraction. A series of laws and regulations regarding the QLA envi...The Qiandao Lake Area (QLA) is of great significance in terms of drinking water supply in East Coast China as well as a nationally renowned tourist attraction. A series of laws and regulations regarding the QLA environment have been enacted and implemented throughout the past decade with the aim of negating the harmful effects associated with expanding urbanization and industrialization. In this research, an assessment framework was developed to analyze the eco-environ- mental vulnerability of the QLA from 1990-2010 by integrating fuzzy analytic hierarchy process (FAHP) and geographical information systems (GIS) in an attempt to gain insights into the status quo of the QLA so as to review and evaluate the effectiveness of the related policies. After processing and analyzing the temporal and spatial variation of eco-environmental vulnerability and major environ- mental issues in the QLA, we found that the state of eco- environmental vulnerability of the QLA was acceptable, though a moderate deterioration was detected during the study period. Furthermore, analysis of the combination of vulnerability and water quality indicated that the water quality showed signs of declination, though the overall status remained satisfactory. It was hence concluded that the collective protection and treatment actions were effective over the study period, whereas immediately stricter measures would be required for protecting the drinking water quality from domestic sewage and industrial wastewater. Finally, the spatial variation of the eco-environmental vulnerability assessment also implied that specifically more targeted measures should be adoptedin respective regions for long-term sustainable develop- ment of the QLA.展开更多
An embedded reservoir that provides an efficient nutrient removal system protects drinking water.However,embedded reservoirs are rarely used in eutrophic shallow lakes because of their undetermined nutrient retention ...An embedded reservoir that provides an efficient nutrient removal system protects drinking water.However,embedded reservoirs are rarely used in eutrophic shallow lakes because of their undetermined nutrient retention efficiency and unknown effects by the phytoplankton community.In this study,we aim to investigate the nutrient retention and algae succession in an embedded reservoir and adjacent wetland from April 2017 to September 2018 in the eastern part of Lake Taihu,China.More than 40%of total phosphorus(TP)and 45%of particulate phosphorous entering the reservoir were retained semiannually,and the highest TP removal efficiency was achieved in the reservoir during autumn with an average value of 53.3%±9.9%.The overall nitrogen retention efficiency(21.7%±37.8%)was lower than that of TP(41.8%±27.8%).Similar trends were obtained in the wetland area.An important pathway for phosphorus removal is through particulate matter retention.Our study revealed that nutrient retention mechanisms in the reservoir were primarily via macrophyte absorption,particulate substance sedimentation,and prolonged water residence time.Consequently,the phytoplankton biomass(Chl-a)in the reservoir decreased(from 48.0 to 25.2μg/L)and water transparency improved,due to the decreased P level and transformation of the phytoplankton group into simple structures with good ecological status.Therefore,the combination of embedded reservoir and constructed wetland ecosystem can be used successfully to protect surface water.The results will be advantageous to groups seeking to preserve drinking water sources.展开更多
文摘Based on field detected water quality data, the distribution characteristics of different forms of nitrogen in a reservoir as drinking water source in Dongguan, which locates at the Pearl River Delta of China, have been analyzed in order to provide theoretical bases for prevention and reduction of eutrophication. The analyzed results show that nitrogen forms in the influent area of the reservoir are given priority to ammonia nitrogen and nitrate nitrogen, whose proportion is more than 45% respectively, and this is probably caused by the pollution of inflow water quality;but in the effluent area, the forms are given priority to nitrate nitrogen, whose proportion is as high as 96% and above;also the proportion of ammonia nitrogen drops by more than 80% during the process from the influent area to the effluent area, and this shows that the natural process of nitrification and denitrification can be well accomplished in the reservoir. We recommend here that to reduce the input amount of ammonia nitrogen and organic nitrogen into the reservoir is the most efficient way to prevent or mitigate eutrophication of water body.
基金supported by the National Key Research and Development Program of China(2022YFC3204100)the National Natural Science Foundation of China(41930760 and 42271120)+1 种基金the Industry Prospect and Key Core Technology Project of Jiangsu Province(BE2022152)RIW was supported by the UKRI Natural Environment Research Council(NERC):Independent Research Fellowship(NE/T011246/1)。
文摘To meet the Sustainable Development Goal(SDG)target 6.1,China has undertaken significant initiatives to address the uneven distribution of water resources and to enhance water quality.Since 2000,China has invested heavily in the water infrastructure of numerous reservoirs,with a total storage capacity increase of 4.704×1011m3(an increase of 90.8%).These reservoirs have significantly enhanced the available freshwater resources for drinking water.Concurrently,efforts to improve water quality in lakes and reservoirs,facilitated by nationwide water quality monitoring,have been successful.As a result,an increasing lakes and reservoirs are designated as centralized drinking water sources(CDWSs)in China.Among the 3441 CDWSs across all provinces,40.8%are sourced from lakes and reservoirs,32.6%from rivers,and 26.6%from groundwater in 2023.Notably,from 2016 to 2023,the percentage of lakes and reservoirs categorized as CDWSs has increased consistently across all 29 provinces.This progress has enabled561.4 million urban residents to access improved drinking water sources in 2022,compared to 303.4 million in 2004.Our findings underscore the pivotal role of water infrastructure construction and water quality improvement jointly promoting lakes and reservoirs as vital drinking water sources.Nevertheless,the nationwide occurrence of algal blooms has surged by 113.7%from the 2000s to the 2010s,which is a considerable challenge to drinking water safety.Fortunately,algal blooms have been markedly alleviated in past four years.However,it is still crucial to acknowledge that lakes and reservoirs face the challenges of algal blooms,and associated toxic microcystin and odor compounds.
基金supported by the National Natural Science Foundation of China (41790423,41930760,and 41621002)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences (QYZDB-SSW-DQC016)Erik Jeppesen was supported by the Tübitak program BIDEB 2232 (project 118C250).
文摘Drinking water is closely related to human health,disease and mortality,and contaminated drinking water causes 485,000 deaths from diarrhea each year worldwide.China has been facing increasingly severe water scarcity due to both water shortages and poor water quality.Ensuring safe and clean drinking water is a great challenge and top priority,especially for China with 1.4 billion people.In China,more than 4000 centralized drinking water sources including rivers,lakes and reservoirs,and groundwater have been established to serve urban residents.However,there is little knowledge on the percentage,serving population and water quality of three centralized drinking water source types.We collected nationwide centralized drinking water sources data and serving population data covering 395 prefecture-level and county-level cities and water quality data in the two most populous provinces(Guangdong and Shandong)to examine their contribution and importance.Geographically,the drinking water source types can be classified into three clear regions exhibiting apparent differences in the respective contributions of rivers,lakes and reservoirs,and groundwater.We further found that overall,lakes and reservoirs account for 40.6%of the centralized drinking water sources vs.river(30.8%)and groundwater(28.6%)in China.Lakes and reservoirs are particularly important in the densely populated eastern region,where they are used as drinking water sources by 51.0%of the population(318 million).Moreover,the contribution to the drinking water supply from lakes and reservoirs is increasing due to their better water quality and many cross-regional water transfer projects.These results will be useful for the government to improve and optimize the establishment of centralized drinking water sources,which provide safe and clean drinking water in China to safeguard people's lives and health and realize sustainable development goals.
文摘The Qiandao Lake Area (QLA) is of great significance in terms of drinking water supply in East Coast China as well as a nationally renowned tourist attraction. A series of laws and regulations regarding the QLA environment have been enacted and implemented throughout the past decade with the aim of negating the harmful effects associated with expanding urbanization and industrialization. In this research, an assessment framework was developed to analyze the eco-environ- mental vulnerability of the QLA from 1990-2010 by integrating fuzzy analytic hierarchy process (FAHP) and geographical information systems (GIS) in an attempt to gain insights into the status quo of the QLA so as to review and evaluate the effectiveness of the related policies. After processing and analyzing the temporal and spatial variation of eco-environmental vulnerability and major environ- mental issues in the QLA, we found that the state of eco- environmental vulnerability of the QLA was acceptable, though a moderate deterioration was detected during the study period. Furthermore, analysis of the combination of vulnerability and water quality indicated that the water quality showed signs of declination, though the overall status remained satisfactory. It was hence concluded that the collective protection and treatment actions were effective over the study period, whereas immediately stricter measures would be required for protecting the drinking water quality from domestic sewage and industrial wastewater. Finally, the spatial variation of the eco-environmental vulnerability assessment also implied that specifically more targeted measures should be adoptedin respective regions for long-term sustainable develop- ment of the QLA.
基金supported by the Bureau of Water Resource of Wujiang District(No.SZSY2018WJG032A)the Joint Innovative and Technological Research Projects from the Ministry of Science and Technology of the People’s Republic of China(No.2016YFE0115800)+1 种基金the China Major Science and Technology Program for Water Pollution Control and Treatment(No.2017ZX07205002)Shanghai Institute of Pollution Control and Ecological Security and the Key Laboratory of Yangtze River Water Environment,Ministry of Education,China
文摘An embedded reservoir that provides an efficient nutrient removal system protects drinking water.However,embedded reservoirs are rarely used in eutrophic shallow lakes because of their undetermined nutrient retention efficiency and unknown effects by the phytoplankton community.In this study,we aim to investigate the nutrient retention and algae succession in an embedded reservoir and adjacent wetland from April 2017 to September 2018 in the eastern part of Lake Taihu,China.More than 40%of total phosphorus(TP)and 45%of particulate phosphorous entering the reservoir were retained semiannually,and the highest TP removal efficiency was achieved in the reservoir during autumn with an average value of 53.3%±9.9%.The overall nitrogen retention efficiency(21.7%±37.8%)was lower than that of TP(41.8%±27.8%).Similar trends were obtained in the wetland area.An important pathway for phosphorus removal is through particulate matter retention.Our study revealed that nutrient retention mechanisms in the reservoir were primarily via macrophyte absorption,particulate substance sedimentation,and prolonged water residence time.Consequently,the phytoplankton biomass(Chl-a)in the reservoir decreased(from 48.0 to 25.2μg/L)and water transparency improved,due to the decreased P level and transformation of the phytoplankton group into simple structures with good ecological status.Therefore,the combination of embedded reservoir and constructed wetland ecosystem can be used successfully to protect surface water.The results will be advantageous to groups seeking to preserve drinking water sources.