Conditions for complete and lag synchronizations in drive-response systems are considered under the unified framework of generalized synchronization. The question is addressed that whether the synchronization conditio...Conditions for complete and lag synchronizations in drive-response systems are considered under the unified framework of generalized synchronization. The question is addressed that whether the synchronization conditions achieving complete synchronization is still valid for lag synchronization when the time delay of signal transmission between the drive and response systems increases from 0. Theoretical and numerical results show that whether the synchronization conditions is stable for the influence of the time delay of signal transmission depends on a particular form of equilibria of the drive and response systems. Furthermore, it seems that the less the number of the equilibria of the drive system, the more likely the synchronization conditions are stable for the time delay of signal trans- mission.展开更多
This paper studies the generalized synchronization of a class of drive-response neural networks with time-varying delay. When the topological structures of the drive-response neural networks are known, by designing an...This paper studies the generalized synchronization of a class of drive-response neural networks with time-varying delay. When the topological structures of the drive-response neural networks are known, by designing an appropriate nonlinear adaptive controller, the generalized synchronization of these two networks is obtained based on Lyapunov stability theory and LaSalle’s invariance principle.展开更多
基金supported by the National Natural Science Foundation of China(11002103 and 11032009)Shanghai Leading Academic Discipline(B302)
文摘Conditions for complete and lag synchronizations in drive-response systems are considered under the unified framework of generalized synchronization. The question is addressed that whether the synchronization conditions achieving complete synchronization is still valid for lag synchronization when the time delay of signal transmission between the drive and response systems increases from 0. Theoretical and numerical results show that whether the synchronization conditions is stable for the influence of the time delay of signal transmission depends on a particular form of equilibria of the drive and response systems. Furthermore, it seems that the less the number of the equilibria of the drive system, the more likely the synchronization conditions are stable for the time delay of signal trans- mission.
文摘This paper studies the generalized synchronization of a class of drive-response neural networks with time-varying delay. When the topological structures of the drive-response neural networks are known, by designing an appropriate nonlinear adaptive controller, the generalized synchronization of these two networks is obtained based on Lyapunov stability theory and LaSalle’s invariance principle.