In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby...In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby limiting their performance.This paper aims to review the underlying mechanisms of how irregularly arranged Pinfins influence the thermal characteristics of power modules and introduce collaborative thermal design with DC bus capacitor and motor.Literature considers chip size,placement,coolant flow direction with the goal of reducing thermal resistance of power modules,minimizing chip junction temperature differentials,and optimizing Pinfin layouts.In the first step,algorithms should efficiently generating numerous unique irregular Pinfin layouts to enhance optimization quality.The second step is to efficiently evaluate Pinfin layouts.Simulation accuracy and speed should be ensured to improve computational efficiency.Finally,to improve overall heat dissipation effectiveness,papers establish models for capacitors,motors,to aid collaborative Pinfin optimization.These research outcomes will provide essential support for future developments in high power density motor drive for vehicles.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
The investigation of electron cyclotron(EC)wave absorption and current drive has been performed for the China Fusion Engineering Test Reactor(CFETR)hybrid scenarios using the TORAY code.To achieve the physics goal of ...The investigation of electron cyclotron(EC)wave absorption and current drive has been performed for the China Fusion Engineering Test Reactor(CFETR)hybrid scenarios using the TORAY code.To achieve the physics goal of the EC system in CFETR,a total of four wave frequency values and nine locations of launching antennas have been considered,and the injection poloidal and toroidal angles have been scanned systematically.The electron cyclotron current drive(ECCD)efficiency of the 170 GHz EC system is quite low due to the wave-particle interactions being located at the low-field side.To optimize the ECCD efficiency,the wave frequency is increased up to 221–250 GHz,which leads to the power being deposited at the high-field side.The off-axis ECCD efficiency can be significantly enhanced by launching EC waves from the top window and injecting them towards the high-field side.The optimized ECCD efficiency atρ=0.32 and atρ=0.4 is 2.9 and 2.2 times that of 170 GHz,respectively.展开更多
A discharge with electron temperature up to 14 keV has been achieved in EAST.Analysis of the electron cyclotron current drive(ECCD)efficiency at high electron temperature under EAST parameters is presented using C3PO/...A discharge with electron temperature up to 14 keV has been achieved in EAST.Analysis of the electron cyclotron current drive(ECCD)efficiency at high electron temperature under EAST parameters is presented using C3PO/LUKE code.Simulation results show that the ECCD efficiency of X-mode increases with central electron temperature up to 10 keV and then starts to decrease above 10 keV,at a specific magnetic field and toroidal angle.The efficiency degradation is due to the presence of the third harmonic extraordinary(X3)downshifted absorption at the low field side(LFS);even the cold resonance of X3 mode is located outside the plasma.As the electron temperature increases from 5 to 20 ke V,the X3 absorption increases from 0.9%to 96.4%.The trapping electron effect at the LFS produces a reverse Ohkawa current.The competition between the Fisch–Boozer current drive and the Ohkawa current drive results in a decrease in ECCD efficiency.ECCD efficiency optimization is achieved through two methods.One is to increase the toroidal angle,leading to X2 mode predominating again over X3 mode and the electron resonance domain of X2 mode moving far from the trapped/passing boundary.The second one is to increase the magnetic field to move away the X3 resonance layer from the plasma,hence less EC power absorbed by X3 mode.展开更多
?Fundamental experiments on lower hybrid current drive (LHCD) have been undertaken on HT-7 superconducting tokamak. The experiments on LHCD efficiency reveal its depen- deuce on plasma density and the toroidal magnet...?Fundamental experiments on lower hybrid current drive (LHCD) have been undertaken on HT-7 superconducting tokamak. The experiments on LHCD efficiency reveal its depen- deuce on plasma density and the toroidal magnetic field. Furthermore, the experiments on HT-7 successfully demonstrate the ability for LHCD to sustain long pulse tokamak discharges, such as discharges with full non-inductive current drive for several seconds. The experimental study to improve plasma confinements by LHCD suggests that the improvement should be due to the change o f current profile. It has also been demonstrated by the experiments that the lower hybrid wave may lead to an enhanced ionization of particles in the region where the wave is deposited.展开更多
The effect of the wave accessibility condition on the lower hybrid cm'rent drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mo...The effect of the wave accessibility condition on the lower hybrid cm'rent drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mode conversion layer of the lower hybrid wave between the fast wave branch and the slow wave branch is proved to exist in the plasma periphery for typical EAST H-mode parameters. Under the framework of the lower hybrid wave simulation code (LSC), the wave ray trajectory and the associated current drive are calculated numerically. The results show that the wave accessibility condition plays an important role on the lower hybrid current drive in EAST plasma. For wave rays with parallel refractive index n||= 2.1 or n|| = 2.5 launched from the outside midplane, the wave rays may penetrate the core plasma due to the toroida] geometry effect, while numerous reflections of the wave ray trajectories in the plasma periphery occur. However, low current drive efficiency is obtained. Meanwhile, the wave accessibility condition is improved if a higher confined magnetic field is applied. The simulation results show that for plasma parameters under present EAST H-mode operation, a significant lower hybrid wave current drive could be obtained for the wave spectrum with peak value n|| = 2.1 if a toroidal magnetic field BT =2.5 T is applied.展开更多
Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 1.0% has been achieve...Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 1.0% has been achieved during the ramp-up phase. The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current, which is mainly dominated by the competition of impurity concentration with wave accessibility condition. In addition, the effect of current profile may play an important role in determining the conversion efficiency.展开更多
Hard disk drives became the major information storage devices, supported by rapidly advancing magnetic recording technology. In this paper, several technical challenges to overcome the superparamagnetic limit are expl...Hard disk drives became the major information storage devices, supported by rapidly advancing magnetic recording technology. In this paper, several technical challenges to overcome the superparamagnetic limit are explained. The longitudinal magnetic recording shall be extended more than 100 Gb/in^2, by adopting new media structure to stabilize the magnetization decay.展开更多
The Fang-48 fault block oil reservoir is an extremely low permeability reservoir, and it is difficult to produce such a reservoir by waterflooding. Laboratory analysis of reservoir oil shows that the minimum miscibili...The Fang-48 fault block oil reservoir is an extremely low permeability reservoir, and it is difficult to produce such a reservoir by waterflooding. Laboratory analysis of reservoir oil shows that the minimum miscibility pressure for CO2 drive in Fang-48 fault block oil reservoir is 29 MPa, lower than the formation fracture pressure of 34 MPa, so the displacement mechanism is miscible drive. The threshold pressure gradient for gas injection is less than that for waterflooding, and the recovery by gas drive is higher than waterflooding. Furthermore, the threshold pressure gradient for carbon dioxide injection is smaller than that for hydrocarbon gas, and the oil recovery by carbon dioxide drive is higher than that by hydrocarbon gas displacement, so carbon dioxide drive is recommended for the development of the Fang-48 fault block oil reservoir.展开更多
The hydro-viscous drive(HVD)has been widely used in fan transmission in vehicles,fans,and scraper conveyors for step-less speed regulation or soft starting.In the mixed friction stage,the contact,friction,and torque c...The hydro-viscous drive(HVD)has been widely used in fan transmission in vehicles,fans,and scraper conveyors for step-less speed regulation or soft starting.In the mixed friction stage,the contact,friction,and torque characteristics of friction pairs are very complex and change at any time.The characteristics of the frictional and hydrodynamic lubrication states were studied in order to calculate and predict the friction and torque characteristics of the friction pairs in the mixed friction stage.The fluid torque was calculated by applying the average shear stress model and the load-carrying capacity of asperity was determined on the basis of the fractal contact theory.In addition,the contact friction coefficient of the friction pairs was taken into consideration and measured by using the MM1000-Ⅲfriction and wear testing machine.The asperity friction torque and total torque in the mixed friction stage were obtained and finally,the test rig for the torque characteristics was set up.The results show that the contribution to the total torque is shared by the oil film and the asperity friction.The friction coefficient decreases sharply at first and then increases with a change in the relative rotational speed,following the Stribeck curve closely,and the contact frictional coefficient slowly decreases with increase in the pressure between the friction pairs.The torque between the friction pairs is provided by the asperity friction,and the torque due to the oil film reduces to zero.When the thickness of the oil film is small,a major contribution to the total torque is due to the asperity friction.The total torque also increases with the decrease in the film thickness ratio.Therefore,by theoretical analysis and experimental verification,the torque of the friction pairs in the mixed friction stage can be accurately calculated using the average shear stress model and asperity friction torque model.展开更多
The flux-weakening performance of a permanent magnet brushless AC drive was investigated using both floating-point and fixed-point DSP controllers. A significant current oscillation was observed when the drive was ope...The flux-weakening performance of a permanent magnet brushless AC drive was investigated using both floating-point and fixed-point DSP controllers. A significant current oscillation was observed when the drive was operated at high-speed in the flux-weakening mode with the fixed-point DSP. The investigation showed that this was due to the on-line compensation of the winding resistance voltage drop and quantisation errors associated with the fixed-point architecture of the DSP. A simple look-up table scheme is proposed to eliminate the oscillation and to achieve extended flux-weakening capability.展开更多
The main topics concerning lower hybrid wave heating (LHH) and lower hybrid current drive (LHCD) in tokamak systems are presented. The inherent properties of tokamak systems give the ‘gap' filling on Brambilla'...The main topics concerning lower hybrid wave heating (LHH) and lower hybrid current drive (LHCD) in tokamak systems are presented. The inherent properties of tokamak systems give the ‘gap' filling on Brambilla's spectrum, which are conducive to LHCD, but, on the other hand, induce a consumption of wave energy by the trapped electrons, which reduce the current drive efficiency. The methods for the enhancement of the current drive efficiency may be derived from detailed analyses by drawing upon the ray tracing technology on toroidal geometry and the Fokker-Planck theory on velocity space.展开更多
The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied, A computer code for solving the Fokker-Planck equation in a toroidal geometry is developed and employed. The co...The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied, A computer code for solving the Fokker-Planck equation in a toroidal geometry is developed and employed. The code is suitable for various auxiliary heating and current drive schemes in tokamak plasmas. The influence of the resonance regime on the current drive efficiency as well as the influence of trapped particle fraction on the current drive efficiency are emphasized. It is shown that, as an electrostatic force, the lower hybrid wave causes some of the trapped electrons to be untrapped and lose their energy, which can cut the LHCD efficiency by about 30%. The ITER scaling law is also used to estimate the trapped electron effects.展开更多
Objectives: This study aims to examine whether information provided by spouse or relatives can be employed to identify PD patients with deteriorated driving performance, using three-year caregiver’s reports on their ...Objectives: This study aims to examine whether information provided by spouse or relatives can be employed to identify PD patients with deteriorated driving performance, using three-year caregiver’s reports on their driving ability as the outcome measure. Methods: Fifty-three idiopathic PD subjects were assessed on open roads. Prior to the driving assessment, participants were examined by a geriatrician with various clinical assessments. The caregivers filled out a questionnaire, the scores of which is a reflection of their concern on driving performanceof their PD relatives. The same measurements were collected for the subsequent two years. Hierarchical Poisson regression analysis, adjusting for gender, age and driving exposure (hours of driving per week), was then undertaken to determine whether the measures of driving assessment were associated with the score of the questionnaire. Results: During the three-year period, all PD participants were rated at least 3 questions positive in the caregiver’s questionnaire;the worst participant was rated positive eight times. Except the assessment criteria to gauge thetraffic rulesandregulations compliance,all other measures of the driving assessment were found to be significantly associated with the information provided by the caregivers. Conclusions: This study demonstrated that the information provided by caregivers was useful to identify PD patients with deteriorated driving performance. If adopted as part of the off-road driving assessment for PD patients, the questionnaire can provide reliable information to clinicians.展开更多
In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inver...In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inverters) supplying the open-end windings of a dual three-phase induction motor is considered, quadrupling the power capability of a single VSI with given voltage and current ratings. In healthy conditions, the control algorithm is able to generate multi-level voltage waveforms, equivalent to the ones of a three-level inverter and to share the total motor power among the four dc sources in each switching period. This sharing capability is investigated under post-fault operating conditions, when one VSI must be completely insulated due to a severe failure on it. In this case, the conversion power unit can operate with a reduced power rating by a proper modulation of the remaining three VSIs. The whole ac motor drive has been numerically implemented, and the effectiveness of the proposed control strategies under healthy and post-fault operating conditions have been proved.展开更多
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy...The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.展开更多
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te...Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.展开更多
Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly...Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition.展开更多
Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bo...Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.展开更多
Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.I...Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.It is shown that the weld zone(WZ) is fully composed of recrystallized B2 phase,and the grain size decreases with increasing rotational rate.The thermo-mechanically affected zone(TMAZ) suffers severe deformation during welding,due to which most of original precipitation phase is dissolved and streamlines are present.In the heat affected zone(HAZ),only the fine O phase is dissolved.The as-welded joint produced using 1000 r/min has the best mechanical properties,whose strength and elongation are both close to those of the base metal,while the as-welded joint obtained using 500 r/min exhibits the worst mechanical properties.Post-weld annealing treatment annihilates the deformation microstructure and fine O phase precipitates in the joints,consequently improving the mechanical properties significantly.Decomposed α_(2) phase is a weakness for the mechanical performance of the joint since microcracks are apt to form in it in the tensile test.展开更多
基金supported in part by National Key R&D Program of China(2021YFB2500600),and in part by Chinese Academy of Sciences Youth multi-discipline project(JCTD-2021-09),and in part by Strategic Piority Research Program of Chinese Academy of Sciences(XDA28040100).
文摘In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby limiting their performance.This paper aims to review the underlying mechanisms of how irregularly arranged Pinfins influence the thermal characteristics of power modules and introduce collaborative thermal design with DC bus capacitor and motor.Literature considers chip size,placement,coolant flow direction with the goal of reducing thermal resistance of power modules,minimizing chip junction temperature differentials,and optimizing Pinfin layouts.In the first step,algorithms should efficiently generating numerous unique irregular Pinfin layouts to enhance optimization quality.The second step is to efficiently evaluate Pinfin layouts.Simulation accuracy and speed should be ensured to improve computational efficiency.Finally,to improve overall heat dissipation effectiveness,papers establish models for capacitors,motors,to aid collaborative Pinfin optimization.These research outcomes will provide essential support for future developments in high power density motor drive for vehicles.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金supported by the National Key R&D Program of China(Nos.2017YFE0300500 and 2017YFE0300503)the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228).
文摘The investigation of electron cyclotron(EC)wave absorption and current drive has been performed for the China Fusion Engineering Test Reactor(CFETR)hybrid scenarios using the TORAY code.To achieve the physics goal of the EC system in CFETR,a total of four wave frequency values and nine locations of launching antennas have been considered,and the injection poloidal and toroidal angles have been scanned systematically.The electron cyclotron current drive(ECCD)efficiency of the 170 GHz EC system is quite low due to the wave-particle interactions being located at the low-field side.To optimize the ECCD efficiency,the wave frequency is increased up to 221–250 GHz,which leads to the power being deposited at the high-field side.The off-axis ECCD efficiency can be significantly enhanced by launching EC waves from the top window and injecting them towards the high-field side.The optimized ECCD efficiency atρ=0.32 and atρ=0.4 is 2.9 and 2.2 times that of 170 GHz,respectively.
基金the National Key R&D Program of China(Nos.2017YFE0300500 and 2017YFE0300503)the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228).
文摘A discharge with electron temperature up to 14 keV has been achieved in EAST.Analysis of the electron cyclotron current drive(ECCD)efficiency at high electron temperature under EAST parameters is presented using C3PO/LUKE code.Simulation results show that the ECCD efficiency of X-mode increases with central electron temperature up to 10 keV and then starts to decrease above 10 keV,at a specific magnetic field and toroidal angle.The efficiency degradation is due to the presence of the third harmonic extraordinary(X3)downshifted absorption at the low field side(LFS);even the cold resonance of X3 mode is located outside the plasma.As the electron temperature increases from 5 to 20 ke V,the X3 absorption increases from 0.9%to 96.4%.The trapping electron effect at the LFS produces a reverse Ohkawa current.The competition between the Fisch–Boozer current drive and the Ohkawa current drive results in a decrease in ECCD efficiency.ECCD efficiency optimization is achieved through two methods.One is to increase the toroidal angle,leading to X2 mode predominating again over X3 mode and the electron resonance domain of X2 mode moving far from the trapped/passing boundary.The second one is to increase the magnetic field to move away the X3 resonance layer from the plasma,hence less EC power absorbed by X3 mode.
文摘?Fundamental experiments on lower hybrid current drive (LHCD) have been undertaken on HT-7 superconducting tokamak. The experiments on LHCD efficiency reveal its depen- deuce on plasma density and the toroidal magnetic field. Furthermore, the experiments on HT-7 successfully demonstrate the ability for LHCD to sustain long pulse tokamak discharges, such as discharges with full non-inductive current drive for several seconds. The experimental study to improve plasma confinements by LHCD suggests that the improvement should be due to the change o f current profile. It has also been demonstrated by the experiments that the lower hybrid wave may lead to an enhanced ionization of particles in the region where the wave is deposited.
基金Supported by the National Natural Science Foundation of China under Grant No 11347002the National Magnetic Confinement Fusion Science Program of China under Grant No 2013GB111000+2 种基金the Outstanding Youth Fund of Hunan Province Education Department of China under Grant No 12B107the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics under Grant No 11261140328the National Research Foundation 2012K2A2A6000443
文摘The effect of the wave accessibility condition on the lower hybrid cm'rent drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mode conversion layer of the lower hybrid wave between the fast wave branch and the slow wave branch is proved to exist in the plasma periphery for typical EAST H-mode parameters. Under the framework of the lower hybrid wave simulation code (LSC), the wave ray trajectory and the associated current drive are calculated numerically. The results show that the wave accessibility condition plays an important role on the lower hybrid current drive in EAST plasma. For wave rays with parallel refractive index n||= 2.1 or n|| = 2.5 launched from the outside midplane, the wave rays may penetrate the core plasma due to the toroida] geometry effect, while numerous reflections of the wave ray trajectories in the plasma periphery occur. However, low current drive efficiency is obtained. Meanwhile, the wave accessibility condition is improved if a higher confined magnetic field is applied. The simulation results show that for plasma parameters under present EAST H-mode operation, a significant lower hybrid wave current drive could be obtained for the wave spectrum with peak value n|| = 2.1 if a toroidal magnetic field BT =2.5 T is applied.
文摘Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 1.0% has been achieved during the ramp-up phase. The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current, which is mainly dominated by the competition of impurity concentration with wave accessibility condition. In addition, the effect of current profile may play an important role in determining the conversion efficiency.
文摘Hard disk drives became the major information storage devices, supported by rapidly advancing magnetic recording technology. In this paper, several technical challenges to overcome the superparamagnetic limit are explained. The longitudinal magnetic recording shall be extended more than 100 Gb/in^2, by adopting new media structure to stabilize the magnetization decay.
文摘The Fang-48 fault block oil reservoir is an extremely low permeability reservoir, and it is difficult to produce such a reservoir by waterflooding. Laboratory analysis of reservoir oil shows that the minimum miscibility pressure for CO2 drive in Fang-48 fault block oil reservoir is 29 MPa, lower than the formation fracture pressure of 34 MPa, so the displacement mechanism is miscible drive. The threshold pressure gradient for gas injection is less than that for waterflooding, and the recovery by gas drive is higher than waterflooding. Furthermore, the threshold pressure gradient for carbon dioxide injection is smaller than that for hydrocarbon gas, and the oil recovery by carbon dioxide drive is higher than that by hydrocarbon gas displacement, so carbon dioxide drive is recommended for the development of the Fang-48 fault block oil reservoir.
基金Supported by National Natural Science Foundation of China(Grant Nos.51805351,U1810123)
文摘The hydro-viscous drive(HVD)has been widely used in fan transmission in vehicles,fans,and scraper conveyors for step-less speed regulation or soft starting.In the mixed friction stage,the contact,friction,and torque characteristics of friction pairs are very complex and change at any time.The characteristics of the frictional and hydrodynamic lubrication states were studied in order to calculate and predict the friction and torque characteristics of the friction pairs in the mixed friction stage.The fluid torque was calculated by applying the average shear stress model and the load-carrying capacity of asperity was determined on the basis of the fractal contact theory.In addition,the contact friction coefficient of the friction pairs was taken into consideration and measured by using the MM1000-Ⅲfriction and wear testing machine.The asperity friction torque and total torque in the mixed friction stage were obtained and finally,the test rig for the torque characteristics was set up.The results show that the contribution to the total torque is shared by the oil film and the asperity friction.The friction coefficient decreases sharply at first and then increases with a change in the relative rotational speed,following the Stribeck curve closely,and the contact frictional coefficient slowly decreases with increase in the pressure between the friction pairs.The torque between the friction pairs is provided by the asperity friction,and the torque due to the oil film reduces to zero.When the thickness of the oil film is small,a major contribution to the total torque is due to the asperity friction.The total torque also increases with the decrease in the film thickness ratio.Therefore,by theoretical analysis and experimental verification,the torque of the friction pairs in the mixed friction stage can be accurately calculated using the average shear stress model and asperity friction torque model.
文摘The flux-weakening performance of a permanent magnet brushless AC drive was investigated using both floating-point and fixed-point DSP controllers. A significant current oscillation was observed when the drive was operated at high-speed in the flux-weakening mode with the fixed-point DSP. The investigation showed that this was due to the on-line compensation of the winding resistance voltage drop and quantisation errors associated with the fixed-point architecture of the DSP. A simple look-up table scheme is proposed to eliminate the oscillation and to achieve extended flux-weakening capability.
基金The project supported by National Natural Science Foundation of China (Nos. 10075016, 10275018 and 10135020)
文摘The main topics concerning lower hybrid wave heating (LHH) and lower hybrid current drive (LHCD) in tokamak systems are presented. The inherent properties of tokamak systems give the ‘gap' filling on Brambilla's spectrum, which are conducive to LHCD, but, on the other hand, induce a consumption of wave energy by the trapped electrons, which reduce the current drive efficiency. The methods for the enhancement of the current drive efficiency may be derived from detailed analyses by drawing upon the ray tracing technology on toroidal geometry and the Fokker-Planck theory on velocity space.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10675043, 10575031 and 10675042).
文摘The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied, A computer code for solving the Fokker-Planck equation in a toroidal geometry is developed and employed. The code is suitable for various auxiliary heating and current drive schemes in tokamak plasmas. The influence of the resonance regime on the current drive efficiency as well as the influence of trapped particle fraction on the current drive efficiency are emphasized. It is shown that, as an electrostatic force, the lower hybrid wave causes some of the trapped electrons to be untrapped and lose their energy, which can cut the LHCD efficiency by about 30%. The ITER scaling law is also used to estimate the trapped electron effects.
文摘Objectives: This study aims to examine whether information provided by spouse or relatives can be employed to identify PD patients with deteriorated driving performance, using three-year caregiver’s reports on their driving ability as the outcome measure. Methods: Fifty-three idiopathic PD subjects were assessed on open roads. Prior to the driving assessment, participants were examined by a geriatrician with various clinical assessments. The caregivers filled out a questionnaire, the scores of which is a reflection of their concern on driving performanceof their PD relatives. The same measurements were collected for the subsequent two years. Hierarchical Poisson regression analysis, adjusting for gender, age and driving exposure (hours of driving per week), was then undertaken to determine whether the measures of driving assessment were associated with the score of the questionnaire. Results: During the three-year period, all PD participants were rated at least 3 questions positive in the caregiver’s questionnaire;the worst participant was rated positive eight times. Except the assessment criteria to gauge thetraffic rulesandregulations compliance,all other measures of the driving assessment were found to be significantly associated with the information provided by the caregivers. Conclusions: This study demonstrated that the information provided by caregivers was useful to identify PD patients with deteriorated driving performance. If adopted as part of the off-road driving assessment for PD patients, the questionnaire can provide reliable information to clinicians.
文摘In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inverters) supplying the open-end windings of a dual three-phase induction motor is considered, quadrupling the power capability of a single VSI with given voltage and current ratings. In healthy conditions, the control algorithm is able to generate multi-level voltage waveforms, equivalent to the ones of a three-level inverter and to share the total motor power among the four dc sources in each switching period. This sharing capability is investigated under post-fault operating conditions, when one VSI must be completely insulated due to a severe failure on it. In this case, the conversion power unit can operate with a reduced power rating by a proper modulation of the remaining three VSIs. The whole ac motor drive has been numerically implemented, and the effectiveness of the proposed control strategies under healthy and post-fault operating conditions have been proved.
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.E2020203174,E2020203078)S&T Program of Hebei Province of China(Grant No.226Z2202G)Science Research Project of Hebei Provincial Education Department of China(Grant No.ZD2022029).
文摘The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.
基金Project supported by the Doctoral Fund of Yanshan University (Grant No.B919)the Program of Independent Research for Young Teachers of Yanshan University (Grant No.020000534)the S&T Program of Hebei Province of China (Grant No.QN2016123)。
文摘Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion.
基金the Fundamental Research Funds for the Central Universities(GrantNo.IR2021222)received by J.Sthe Future Science and Technology Innovation Team Project of HIT(216506)received by Q.W.
文摘Driving fatigue is a physiological phenomenon that often occurs during driving.After the driver enters a fatigued state,the attentionis lax,the response is slow,and the ability todeal with emergencies is significantly reduced,which can easily cause traffic accidents.Therefore,studying driver fatigue detectionmethods is significant in ensuring safe driving.However,the fatigue state of actual drivers is easily interfered with by the external environment(glasses and light),which leads to many problems,such as weak reliability of fatigue driving detection.Moreover,fatigue is a slow process,first manifested in physiological signals and then reflected in human face images.To improve the accuracy and stability of fatigue detection,this paper proposed a driver fatigue detection method based on image information and physiological information,designed a fatigue driving detection device,built a simulation driving experiment platform,and collected facial as well as physiological information of drivers during driving.Finally,the effectiveness of the fatigue detection method was evaluated.Eye movement feature parameters and physiological signal features of drivers’fatigue levels were extracted.The driver fatigue detection model was trained to classify fatigue and non-fatigue states based on the extracted features.Accuracy rates of the image,electroencephalogram(EEG),and blood oxygen signals were 86%,82%,and 71%,separately.Information fusion theory was presented to facilitate the fatigue detection effect;the fatigue features were fused using multiple kernel learning and typical correlation analysis methods to increase the detection accuracy to 94%.It can be seen that the fatigue driving detectionmethod based onmulti-source feature fusion effectively detected driver fatigue state,and the accuracy rate was higher than that of a single information source.In summary,fatigue drivingmonitoring has broad development prospects and can be used in traffic accident prevention and wearable driver fatigue recognition.
基金Project supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.
基金the financial supports from the Science and Technology Special Project, China (No. K19168)the National Science and Technology Major Project of China (No. 2017-VI-0004-0075)the National Natural Science Foundation of China (No. 52231002)。
文摘Ti_(2)AlNb-based alloy was joined in a continuous drive friction welding machine under different rotational rates(500,1000 and 1500 r/min).The microstructure and mechanical properties of the joints were investigated.It is shown that the weld zone(WZ) is fully composed of recrystallized B2 phase,and the grain size decreases with increasing rotational rate.The thermo-mechanically affected zone(TMAZ) suffers severe deformation during welding,due to which most of original precipitation phase is dissolved and streamlines are present.In the heat affected zone(HAZ),only the fine O phase is dissolved.The as-welded joint produced using 1000 r/min has the best mechanical properties,whose strength and elongation are both close to those of the base metal,while the as-welded joint obtained using 500 r/min exhibits the worst mechanical properties.Post-weld annealing treatment annihilates the deformation microstructure and fine O phase precipitates in the joints,consequently improving the mechanical properties significantly.Decomposed α_(2) phase is a weakness for the mechanical performance of the joint since microcracks are apt to form in it in the tensile test.