Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile drive...Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile driveability and bearing capacity. The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service. This paper addresses the former aspect. A numerical procedure for soil plug effect prediction and pile driveabihty analysis is proposed and described. By taking into consideration of the pile dimension effect on side and tip resistance, this approach introduces a dimensional coefficient to the conventional static eqnihbrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction. At the same time, this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soil plug and pile inner wall. The proposed approach has been applied in practical engineering analyses. Results show that the calculated plug effect and pile driveabihty based on the proposed approach agree well with the observed data.展开更多
There are various methods for analyzing pile driving process such as dynamic formulas, wave equation analyses and dynamic measurements. The programs of the two latter methods are relatively expensive to purchase and a...There are various methods for analyzing pile driving process such as dynamic formulas, wave equation analyses and dynamic measurements. The programs of the two latter methods are relatively expensive to purchase and also require trained engineers to interpret the data it collects. Meanwhile, the use of the site specific empirical formulas based on the real cases of pile driving and output analyses of the wave equation analysis programs can be beneficial. In the current study, pile driving data from three sites in the south of Iran were collected. Using the data of these cases and one-dimensional wave equation analysis program GRLWEAP, couple of experimental formulas which determine the proper range of hammer's ID for driving a pile, are proposed. Finally, due to the importance of the time in marine projects, another experimental formula is also proposed for estimation of the total driving time.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50309009)the National High Technology Research and Development Program of China(863 Program,Grant No.2004AA616100)
文摘Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile driveability and bearing capacity. The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service. This paper addresses the former aspect. A numerical procedure for soil plug effect prediction and pile driveabihty analysis is proposed and described. By taking into consideration of the pile dimension effect on side and tip resistance, this approach introduces a dimensional coefficient to the conventional static eqnihbrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction. At the same time, this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soil plug and pile inner wall. The proposed approach has been applied in practical engineering analyses. Results show that the calculated plug effect and pile driveabihty based on the proposed approach agree well with the observed data.
文摘There are various methods for analyzing pile driving process such as dynamic formulas, wave equation analyses and dynamic measurements. The programs of the two latter methods are relatively expensive to purchase and also require trained engineers to interpret the data it collects. Meanwhile, the use of the site specific empirical formulas based on the real cases of pile driving and output analyses of the wave equation analysis programs can be beneficial. In the current study, pile driving data from three sites in the south of Iran were collected. Using the data of these cases and one-dimensional wave equation analysis program GRLWEAP, couple of experimental formulas which determine the proper range of hammer's ID for driving a pile, are proposed. Finally, due to the importance of the time in marine projects, another experimental formula is also proposed for estimation of the total driving time.