期刊文献+
共找到53,816篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano‑Aerogel via Abundant Nano‑Sized Cavities and Attenuation Interfaces 被引量:1
1
作者 Haoyu Ma Maryam Fashandi +5 位作者 Zeineb Ben Rejeb Xin Ming Yingjun Liu Pengjian Gong Guangxian Li Chul B.Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期370-383,共14页
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT... Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work. 展开更多
关键词 Nano-pore size Heterogeneous interface Electromagnetic wave absorption Thermal infrared stealth Nano-aerogel
下载PDF
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:1
2
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode interface conductive network Ionic transport Mechanical stability
下载PDF
Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 被引量:1
3
作者 Cuiping Li Dan Li +4 位作者 Shuai Zhang Long Ma Lei Zhang Jingwei Zhang Chunhong Gong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期147-160,共14页
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently... Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering. 展开更多
关键词 TiN nanotubes interface engineering Polarization loss Impedance matching Electromagnetic wave absorption performance
下载PDF
A 3D In-vitro model of the human dentine interface shows long-range osteoinduction from the dentine surface
4
作者 William Macalester Asme Boussahel +4 位作者 Rafael O.Moreno-Tortolero Mark R.Shannon Nicola West Darryl Hill Adam Perriman 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第2期225-237,共13页
Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the or... Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering,exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems,which will impact on cell fate and subsequent treatment efficacy.Herein,we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells(hMSCs)encapsulated in a microporous hydrogel bioink.We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs,and that both dentine andβ-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface,which is distal to the gel-substrate interface.Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models. 展开更多
关键词 interface DEN SURFACE
下载PDF
Recent Advances in Nanoengineering of Electrode-Electrolyte Interfaces to Realize High-Performance Li-Ion Batteries
5
作者 Na-Yeong Kim Ilgyu Kim +5 位作者 Behnoosh Bornamehr Volker Presser Hiroyuki Ueda Ho-Jin Lee Jun Young Cheong Ji-Won Jung 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期1-13,共13页
A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and developme... A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries. 展开更多
关键词 battery ELECTRODE ELECTROLYTE interface LITHIUM NANOENGINEERING
下载PDF
INTERFACE BEHAVIOR AND DECAY RATES OF COMPRESSIBLE NAVIER-STOKES SYSTEM WITH DENSITY-DEPENDENT VISCOSITY AND A VACUUM
6
作者 郭真华 张学耀 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期247-274,共28页
In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function ... In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficientμ(ρ)=ρ^(α)for any 0<α<1;this includes the timeweighted boundedness from below and above.The smoothness of the solution is discussed.Moreover,we construct a class of self-similar classical solutions which exhibit some interesting properties,such as optimal estimates.The present paper extends the results in[Luo T,Xin Z P,Yang T.SIAM J Math Anal,2000,31(6):1175-1191]to the jump boundary conditions case with density-dependent viscosity. 展开更多
关键词 decay rates interface Navier-Stokes equations VACUUM
下载PDF
Mg/MgO interfaces as efficient hydrogen evolution cathodes causing accelerated corrosion of additive manufactured Mg alloys:A DFT analysis
7
作者 Man-Fai Ng Kai Xiang Kuah +1 位作者 Teck Leong Tan Daniel John Blackwood 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期110-119,共10页
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl... The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium. 展开更多
关键词 MAGNESIUM Magnesium oxide interface Hydrogen evolution DFT
下载PDF
Preparation and interface state of phosphate tailing-based geopolymers
8
作者 ZHANG Shou-xun XIE Xian +4 位作者 XIE Rui-qi TONG Xiong WU Yu-yao LI Jia-wen LI Yue 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1900-1914,共15页
The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geop... The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings. 展开更多
关键词 phosphate tailing GEOPOLYMER interface state toxicity leaching
下载PDF
A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator
9
作者 Jun Hu Mitsumasa Iwamoto Xiangyu Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期106-130,共25页
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables... The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG. 展开更多
关键词 Contact electrification interfaceS Triboelectric nanogenerators Diversified applications
下载PDF
Oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions via Prufer transformation
10
作者 LI Zhi-yu LI Kun +2 位作者 CAI Jin-ming QIN Jian-fang ZHENG Zhao-wen 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期191-200,共10页
A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in ... A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in this paper is based on Prufer transformation,which is different from the classical ones.Moreover,we give two examples to verify our main results. 展开更多
关键词 Sturm-Liouville problem interface condition oscillatory solution
下载PDF
Sulfur vacancies and heterogeneous interfaces promote high performance sodium storage of bimetallic chalcogenide hollow nanospheres
11
作者 Shiyue Cao Xiaoting Xu +2 位作者 Qiming Liu Huijuan Zhu Ting Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期596-610,I0013,共16页
Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electro... Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electrochemical performance is greatly limited.In this study,a nickel/manganese sulfide material(Ni_(0.96)S_(x)/MnS_(y)-NC)with adjustable sulfur vacancies and heterogeneous hollow spheres was prepared using a simple method.The introduction of a concentration-adjustable sulfur vacancy enables the generation of a heterogeneous interface between bimetallic sulfide and sulfur vacancies.This interface collectively creates an internal electric field,improving the mobility of electrons and ions,increasing the number of electrochemically active sites,and further optimizing the performance of Na~+storage.The direction of electron flow is confirmed by Density functional theory(DFT)calculations.The hollow nano-spherical material provides a buffer for expansion,facilitating rapid transfer kinetics.Our innovative discovery involves the interaction between the ether-based electrolyte and copper foil,leading to the formation of Cu_9S_5,which grafts the active material and copper current collector,reinforcing mechanical supporting.This results in a new heterostructure of Cu_9S_5 with Ni_(0.96)S_(x)/MnS_(y),contributing to the stabilization of structural integrity for long-cycle performance.Therefore,Ni_(0.96)S_(x)/MnS_(y)-NC exhibits excellent electrochemical properties following our modification route.Regarding stability performance,Ni0_(.96)S_(x)/MnS_(y)-NC demonstrates an average decay rate of 0.00944%after 10,000 cycles at an extremely high current density of 10000 mA g^(-1),A full cell with a high capacity of 304.2 mA h g^(-1)was also successfully assembled by using Na_(3)V_(2)(PO_(4))_(3)/C as the cathode.This study explores a novel strategy for interface/vacancy co-modification in the fabrication of high-performance sodium-ion batteries electrode. 展开更多
关键词 Sulfur vacancies Heterogeneous interface Interactions Sodium ion batteries
下载PDF
Buried interface management via bifunctional NH_(4)BF_(4)towards efficient CsPbI_(2)Br solar cells with a V_(oc)over 1.4 V
12
作者 Fazheng Qiu Ming-Hua Li +1 位作者 Jinpeng Wu Jin-Song Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期364-370,I0009,共8页
CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.Howe... CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.However,the abundant defects at the buried interface and perovskite layer induce severe charge recombination,resulting in the open-circuit voltage(V_(oc))output and stability much lower than anticipated.Herein,a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI_(2)Br defects by introducing ammonium tetrafluoroborate(NH_(4)BF_(4)),thereby resulting in both high CsPbI_(2)Br crystallization and minimized interfacial energy losses.Specifically,NH_(4)^(+)ions could preferentially heal hydroxyl groups on the SnO_(2)surface and balance energy level alignment between SnO_(2)and CsPbI_(2)Br,enhancing charge transport efficiency,while BF_(4)^(-)anions as a quasi-halogen regulate crystal growth of CsPbI_(2)Br,thus reducing perovskite defects.Additionally,it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI_(2)Br for strengthening the phase stability.As a result,the optimized CsPbI_(2)Br PSCs realize a remarkable efficiency of 17.09%and an ultrahigh V_(oc)output of 1.43 V,which is one of the highest values for CsPbI_(2)Br PSCs. 展开更多
关键词 Inorganic perovskite Buried interface Defect Stability Open-circuit voltage loss
下载PDF
Research on modeling and self-excited vibration mechanism in magnetic levitation-collision interface coupling system
13
作者 Jinghu TANG Chaofeng LI +1 位作者 Jin ZHOU Zhiwei WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期873-890,共18页
The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a... The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state. 展开更多
关键词 magnetic levitation coupling system self-excited vibration mechanical interface vibration frequency
下载PDF
Stabilizing iridium sites via interface and reconstruction regulations for water oxidation in alkaline and acidic media
14
作者 Weibin Chen Yanhui Song +2 位作者 Lei Li Junjie Guo Zhan Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期355-363,I0009,共10页
Exploring effective iridium(Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction(OER).Herein,we regulated the incorporation manner of Ir in Co_(3)O_(4)support to sta... Exploring effective iridium(Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction(OER).Herein,we regulated the incorporation manner of Ir in Co_(3)O_(4)support to stabilize the Ir sites for effective OER.When anchored on the surface of Co_(3)O_(4)in the form of Ir(OH)_6 species,the created Ir-OH-Co interface leads to a limited stability and poor acidic OER due to Ir leaching.When doped into Co_(3)O_(4)lattice,the analyses of X-ray absorption spectroscopy,in-situ Raman,and OER measurements show that the partially replacement of Co in Co_(3)O_(4)by Ir atoms inclines to cause strong electronic effect and activate lattice oxygen in the presence of Ir-O-Co interface,and simultaneously master the reconstruction effect to mitigate Ir dissolution,realizing the improved OER activity and stability in alkaline and acidic environments.As a result,Ir_(lat)@Co_(3)O_(4)with Ir loading of 3.67 wt%requires 294±4 mV/285±3 mV and 326±2 mV to deliver 10 mA cm^(-2)in alkaline(0.1 M KOH/1.0 M KOH)and acidic(0.5 M H_(2)SO_(4))solution,respectively,with good stability. 展开更多
关键词 interface effect RECONSTRUCTION Ir dissolution Ir-O-Co Oxygen evolution reaction
下载PDF
Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
15
作者 王秋辰 黄昱力 +3 位作者 许晶 禹习谦 李泓 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期117-126,共10页
Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid ... Silicon(Si)is a competitive anode material owing to its high theoretical capacity and low electrochemical potential.Recently,the prospect of Si anodes in solid-state batteries(SSBs)has been proposed due to less solid electrolyte interphase(SEI)formation and particle pulverization.However,major challenges arise for Si anodes in SSBs at elevated temperatures.In this work,the failure mechanisms of Si-Li_(6)PS_(5)Cl(LPSC)composite anodes above 80℃are thoroughly investigated from the perspectives of interface stability and(electro)chemo-mechanical effect.The chemistry and growth kinetics of Lix Si|LPSC interphase are demonstrated by combining electrochemical,chemical and computational characterizations.Si and/or Si–P compound formed at Lix Si|LPSC interface prove to be detrimental to interface stability at high temperatures.On the other hand,excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes.This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs. 展开更多
关键词 sulfide electrolytes silicon anodes interface stability degradation kinetics all-solid-state batteries
下载PDF
Challenges and Suggestions of Ethical Review on Clinical Research Involving Brain-Computer Interfaces
16
作者 Xue-Qin Wang Hong-Qiang Sun +3 位作者 Jia-Yue Si Zi-Yan Lin Xiao-Mei Zhai Lin Lu 《Chinese Medical Sciences Journal》 CAS CSCD 2024年第2期131-139,共9页
Brain-computer interface(BCI)technology is rapidly advancing in medical research and application.As an emerging biomedical engineering technology,it has garnered significant attention in the clinical research of brain... Brain-computer interface(BCI)technology is rapidly advancing in medical research and application.As an emerging biomedical engineering technology,it has garnered significant attention in the clinical research of brain disease diagnosis and treatment,neurological rehabilitation,and mental health.However,BCI also raises several challenges and ethical concerns in clinical research.In this article,the authors investigate and discuss three aspects of BCI in medicine and healthcare:the state of international ethical governance,multidimensional ethical challenges pertaining to BCI in clinical research,and suggestive concerns for ethical review.Despite the great potential of frontier BCI research and development in the field of medical care,the ethical challenges induced by itself and the complexities of clinical research and brain function have put forward new special fields for ethics in BCI.To ensure"responsible innovation"in BCI research in healthcare and medicine,the creation of an ethical global governance framework and system,along with special guidelines for cutting-edge BCI research in medicine,is suggested. 展开更多
关键词 brain-computer interface clinical research BIOETHICS ethical governance ethical review
下载PDF
In-situ thermal Raman mapping and stress analysis of CNT/CF/epoxy interfaces
17
作者 HE Jing-zong CHEN Shi +2 位作者 MA Zheng-kun LU Yong-gen WU Qi-lin 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期703-714,共12页
A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed u... A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology. 展开更多
关键词 Thermal Raman mapping Stress distribution Carbon fiber Carbon nanotube interface
下载PDF
Roughness characterization and shearing dislocation failure for rock-backfill interface
18
作者 Meifeng Cai Zhilou Feng +3 位作者 Qifeng Guo Xiong Yin Minghui Ma Xun Xi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1167-1176,共10页
Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf.This paper designed a test method for rock–backfill shear... Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf.This paper designed a test method for rock–backfill shearing dislocation.Using digital image techno-logy and three-dimensional(3D)laser morphology scanning techniques,a set of 3D models with rough joint surfaces was established.Further,the mechanical behavior of rock–backfill shearing dislocation was investigated using a direct shear test.The effects of interface roughness on the shear–displacement curve and failure characteristics of rock–backfill specimens were considered.The 3D fractal dimen-sion,profile line joint roughness coefficient(JRC),profile line two-dimensional fractal dimension,and the surface curvature of the frac-tures were obtained.The correlation characterization of surface roughness was then analyzed,and the shear strength could be measured and calculated using JRC.The results showed the following:there were three failure threshold value points in rock–backfill shearing dis-location:30%–50%displacement before the peak,70%–90%displacement before the peak,and 100%displacement before the peak to post-peak,which could be a sign for rock–backfill shearing dislocation failure.The surface JRC could be used to judge the rock–backfill shearing dislocation failure,including post-peak sliding,uniform variations,and gradient change,corresponding to rock–backfill disloca-tion failure on the field site.The research reveals the damage mechanism for rock–backfill complexes based on the free joint surface,fills the gap of existing shearing theoretical systems for isomerism complexes,and provides a theoretical basis for the prevention and control of possible disasters in backfill mining. 展开更多
关键词 rock–backfill ROUGHNESS correlation characterization shearing dislocation interface failure
下载PDF
STABILITY OF THE RAREFACTION WAVE IN THE SINGULAR LIMIT OF A SHARP INTERFACE PROBLEM FOR THE COMPRESSIBLE NAVIER-STOKES/ALLEN-CAHN SYSTEM
19
作者 Yunkun CHEN Bin HUANG Xiaoding SHI 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1507-1523,共17页
This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy... This paper is concerned with the global well-posedness of the solution to the compressible Navier-Stokes/Allen-Cahn system and its sharp interface limit in one-dimensional space.For the perturbations with small energy but possibly large oscillations of rarefaction wave solutions near phase separation,and where the strength of the initial phase field could be arbitrarily large,we prove that the solution of the Cauchy problem exists for all time,and converges to the centered rarefaction wave solution of the corresponding standard two-phase Euler equation as the viscosity and the thickness of the interface tend to zero.The proof is mainly based on a scaling argument and a basic energy method. 展开更多
关键词 compressible Navier-Stokes equations Allen-Cahn equation rarefaction wave sharp interface limit STABILITY
下载PDF
Degradable magnesium alloy suture promotes fibrocartilaginous interface regeneration in a rat rotator cuff transosseous repair model
20
作者 Baoxiang Zhang Wen Zhang +5 位作者 Fei Zhang Chao Ning Mingyang An Ke Yang Lili Tan Qiang Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期384-393,共10页
Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present... Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present work,degradable magnesium(Mg)alloy wire was applied to suture supraspinatus tendon in a rat acute rotator cuff tear model with Vicryl Plus 4±0 absorbable suture as control.The shoulder joint humerus-supraspinatus tendon complex specimens were retrieved at 4,8,and 12 weeks after operation.The Mg alloy suture groups showed better biomechanical properties in terms of ultimate load to failure.Gross observation showed that hyperplastic response of the scar tissue at the tendon-bone interface is progressively alleviated over time in the both Mg alloy suture and Vicryl suture groups.In the histological analysis,for Mg alloy suture groups,chondrocytes appear to proliferate at 4 weeks postoperatively,and the tendon-bone interface showed an orderly structural transition zone at 8 weeks postoperatively.The collagenous fiber tended to be aligned and the tendon-bone interlocking structures apparently formed,where transitional structure from unmineralized fibrocartilage to mineralized fibrocartilage was closer to the native fibrocartilaginous enthesis.In vivo degradation of the magnesium alloy wire was completed within 12 weeks.The results indicated that Mg alloy wire was promising as degradable suture with the potential to promotes fibrocartilaginous interface regeneration in rotator cuff repair. 展开更多
关键词 Rotator cuff repair Mg alloy wire Tendon-bone healing Fibrocartilaginous interface
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部