The current research of wind turbine drivetrain is mainly concentrated in dynamic characteristics of gearbox with a specific suspension of main shaft, such as one-point and two-point suspension. However, little attent...The current research of wind turbine drivetrain is mainly concentrated in dynamic characteristics of gearbox with a specific suspension of main shaft, such as one-point and two-point suspension. However, little attention is paid to the e ects of these suspension configurations on the dynamic responses of wind turbine gearbox. This paper investigates the influences of suspension configurations of main shaft on the dynamic characteristics of drivetrain. For evaluating the dynamic behaviors of drivetrain with multi-stage transmission system more realistically, a dynamic modeling approach of drivetrain is proposed based on Timoshenko beam theory and Lagrange's equation. Considering the flexibility and di erent suspension configurations of main shaft, time-varying mesh sti ness excitation, time-varying transmission error excitation and gravity excitation, etc., a three-dimensional dynamic model of drivetrain is developed, and the dynamic responses of drivetrain are investigated. Results show that with the one-point suspension of main shaft, the resonance frequencies in gearbox, especially at the low-speed stage, obviously shift to the higher frequency range compared to the gearbox without main shaft, but this trend could be inversed by increasing main shaft length. Meanwhile, the loads in main shaft, main shaft bearing and carrier bearing are greatly sensitive to the main shaft length. Hence, the load sharing is further disrupted by main shaft, but this e ect could be alleviated by larger load torque. Comparing to the one-point suspension of main shaft, there occurs the obvious load reduction at the low-speed stage with two-point suspension of main shaft. However, those advantages greatly depend on the distance between two main bearings, and come at the expense of increased load in upwind main shaft unit and the corresponding main bearing. Finally, a wind field test is conducted to verify the proposed drivetrain model. This study develops a numerical model of drivetrain which is able to evaluate the e ects of di erent suspension configurations of main shaft on gearbox.展开更多
This paper proposed a design of the drivetmin system of an electric bus with ultraeapacitor (UC) as the only on-board power source. The system includes three main parts, namely, UC bank, motor and the converter, veh...This paper proposed a design of the drivetmin system of an electric bus with ultraeapacitor (UC) as the only on-board power source. The system includes three main parts, namely, UC bank, motor and the converter, vehicle management unit (VMU). Analyses results in detail on the funetional design and ex-periments on work bench of each part were also presented, which validated the reliability of the system. Furthermore, driving results in field of the bus verified the feasibility of the design of the drivetrain sys-tem. The bus has very good dynamic performanees and shows a promising applieations prospeet in the short and medium route buses system.展开更多
Maintenance costs account for a significant portion of the total cost of electricity generated by wind turbines.Currently in the wind power industry,maintenance is mainly performed on regular schedules or when signifi...Maintenance costs account for a significant portion of the total cost of electricity generated by wind turbines.Currently in the wind power industry,maintenance is mainly performed on regular schedules or when significant damage occurs in a wind turbine making it inoperable,instead of being determined by the actual condition of the wind turbine.Among the total maintenance costs,approximately 25%~35%is related to regularly scheduled preventive maintenance and 65%~75%to unscheduled corrective maintenance.To reduce the failure rate and level and maintenance costs and improve the availability,reliability,safety,and lifespans of wind turbines,it is desirable to perform condition-based predictive maintenance for wind turbines,which will require a high-fidelity online prognostic condition monitoring system(CMS)for fault diagnosis and prognosis and remaining useful life(RUL)prediction of wind turbines.Most of the existing wind turbine CMSs are based on vibration monitoring and have no or limited capability in fault prognosis and RUL prediction.Compared to vibration monitoring,the prognostic condition monitoring techniques based on generator current signal analysis proposed recently have significant advantages in terms of cost,hardware complexity,implementation,and reliability.This paper discusses the principles and challenges of using generator current signals for prognostic condition monitoring of wind turbine drivetrains and presents an overview of recent advancements in this area.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51775061,51575061)Chongqing Municipal Research Program of Frontier and Application Foundation of China(Grant No.cstc2018jcyj AX0087)
文摘The current research of wind turbine drivetrain is mainly concentrated in dynamic characteristics of gearbox with a specific suspension of main shaft, such as one-point and two-point suspension. However, little attention is paid to the e ects of these suspension configurations on the dynamic responses of wind turbine gearbox. This paper investigates the influences of suspension configurations of main shaft on the dynamic characteristics of drivetrain. For evaluating the dynamic behaviors of drivetrain with multi-stage transmission system more realistically, a dynamic modeling approach of drivetrain is proposed based on Timoshenko beam theory and Lagrange's equation. Considering the flexibility and di erent suspension configurations of main shaft, time-varying mesh sti ness excitation, time-varying transmission error excitation and gravity excitation, etc., a three-dimensional dynamic model of drivetrain is developed, and the dynamic responses of drivetrain are investigated. Results show that with the one-point suspension of main shaft, the resonance frequencies in gearbox, especially at the low-speed stage, obviously shift to the higher frequency range compared to the gearbox without main shaft, but this trend could be inversed by increasing main shaft length. Meanwhile, the loads in main shaft, main shaft bearing and carrier bearing are greatly sensitive to the main shaft length. Hence, the load sharing is further disrupted by main shaft, but this e ect could be alleviated by larger load torque. Comparing to the one-point suspension of main shaft, there occurs the obvious load reduction at the low-speed stage with two-point suspension of main shaft. However, those advantages greatly depend on the distance between two main bearings, and come at the expense of increased load in upwind main shaft unit and the corresponding main bearing. Finally, a wind field test is conducted to verify the proposed drivetrain model. This study develops a numerical model of drivetrain which is able to evaluate the e ects of di erent suspension configurations of main shaft on gearbox.
文摘This paper proposed a design of the drivetmin system of an electric bus with ultraeapacitor (UC) as the only on-board power source. The system includes three main parts, namely, UC bank, motor and the converter, vehicle management unit (VMU). Analyses results in detail on the funetional design and ex-periments on work bench of each part were also presented, which validated the reliability of the system. Furthermore, driving results in field of the bus verified the feasibility of the design of the drivetrain sys-tem. The bus has very good dynamic performanees and shows a promising applieations prospeet in the short and medium route buses system.
基金This work was supported in part by the Office of Energy Efficiency and Renewable Energy(EERE),U.S.Department of Energy under Awards Number DE-EE0006802 and DE-EE0001366in part by the U.S.National Science Foundation under Grant ECCS-1308045.
文摘Maintenance costs account for a significant portion of the total cost of electricity generated by wind turbines.Currently in the wind power industry,maintenance is mainly performed on regular schedules or when significant damage occurs in a wind turbine making it inoperable,instead of being determined by the actual condition of the wind turbine.Among the total maintenance costs,approximately 25%~35%is related to regularly scheduled preventive maintenance and 65%~75%to unscheduled corrective maintenance.To reduce the failure rate and level and maintenance costs and improve the availability,reliability,safety,and lifespans of wind turbines,it is desirable to perform condition-based predictive maintenance for wind turbines,which will require a high-fidelity online prognostic condition monitoring system(CMS)for fault diagnosis and prognosis and remaining useful life(RUL)prediction of wind turbines.Most of the existing wind turbine CMSs are based on vibration monitoring and have no or limited capability in fault prognosis and RUL prediction.Compared to vibration monitoring,the prognostic condition monitoring techniques based on generator current signal analysis proposed recently have significant advantages in terms of cost,hardware complexity,implementation,and reliability.This paper discusses the principles and challenges of using generator current signals for prognostic condition monitoring of wind turbine drivetrains and presents an overview of recent advancements in this area.