This paper examines the energy and environmental benefits within the whole life cycle shifting from traditional gasoline vehicles to electrified advanced vehicles under regional real-world driving behaviors. The advan...This paper examines the energy and environmental benefits within the whole life cycle shifting from traditional gasoline vehicles to electrified advanced vehicles under regional real-world driving behaviors. The advance vehicles focus on family passenger cars and include battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs). The GREET (greenhouse gases, regulated emissions, and energy use in transportation) model is adopted with regional circumstances modifications, especially the UF (utility factors) of PHEVs. The results show that the electrified vehicles offer great benefits concerning energy consumption, greenhouse gas (GHG) emissions as well as urban Particulate Matter 2,5 (PMz.s) emissions. Compared to conventional gasoline vehicles, the life-cycle total energy reduction for advance vehicles is 51% to 57%. There is little difference on energy reduction among the HEVs, PHEVs and BEVs, with the energy mix shifting from petroleum to coal for the stronger electrification. The reductions of GHG emissions are 57% for HEV, 54% to 48% for PHEVs with 10 miles to 40 miles CD range, and 40% for BEV. The life-cycle and local PM2.5 emissions are discussed separately. The life-cycle PM2.5 emissions increase with vehicle electrification and reach a maximum for the BEV which are 5% higher than the conventional vehicle (CV). However, electric vehicles can shift PM2.5 emissions from vehicle operation to upstream operations and help mitigate PM2.5 emissions in urban areas. The local emissions of PHEVs and BEVs can be reduced by 37% to 81% and 100% compared with CVs.展开更多
Using a set of measuring system installed on a testing vehicle, 15 criterion numbers, which describe the details of vehicle′s driving pattern and emission characteristic on real road condition of Tianjin, are obtaine...Using a set of measuring system installed on a testing vehicle, 15 criterion numbers, which describe the details of vehicle′s driving pattern and emission characteristic on real road condition of Tianjin, are obtained from a large quantity of raw data. The results show that the characteristic of driving pattern in Tianjin is very different from that of ECE-15 and FTP-75. That is to say, neither of these two emission testing procedures is suitable in China. A new driving cycle is developed which is accordance with the driving pattern of Tianjin.This cycle can be used to evaluate the emission levels of vehicles under real-road condition in laboratory, and can be recommended as a testing procedure used in China.展开更多
The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle drivin...The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.展开更多
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dyna...Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.展开更多
The emergence of new technologies such as GPS,cellphone,Bluetooth device,etc.offers opportunities for collecting high-fidelity temporal-spatial travel data in a cost-effective manner.With the vehicle trajectory data a...The emergence of new technologies such as GPS,cellphone,Bluetooth device,etc.offers opportunities for collecting high-fidelity temporal-spatial travel data in a cost-effective manner.With the vehicle trajectory data achieved from a smartphone app Metropia,this study targets on exploring the trajectory data and designing the measurements of the driving pattern.Metropia is a recently available mobile traffic app that uses prediction and coordinating technology combined with user rewards to incentivize drivers to cooperate,balance traffic load on the network,and reduce traffic congestion.Speed and celeration(acceleration and deceleration)are obtained from the Metropia platform directly and parameterized as individual and system measurements related to traffic,spatial and temporal conditions.A case study is provided in this paper to demonstrate the feasibility of this approach utilizing the trajectory data from the actual app usage.The driving behaviors at both individual and system levels are quantified from the microscopic speed and celeration records.The results from this study reveal distinct driving behavior pattern and shed lights for further opportunities to identify behavior characteristics beyond safety and environmental considerations.展开更多
A total of 14 in-use diesel buses were selected to conduct emission measurement using a portable emissions measurement system (PEMS) in Beijing. Their instantaneous gaseous emission rates, particular matter (PM) e...A total of 14 in-use diesel buses were selected to conduct emission measurement using a portable emissions measurement system (PEMS) in Beijing. Their instantaneous gaseous emission rates, particular matter (PM) emission rates and driving parameters were obtained. The influences of speed, acceleration and vehicle specific power (VSP) on emissions were analyzed. Based on the relationships between these driving parameters and emissions, 24 driving bins defined by speed, ac- celeration and VSP were constructed with cluster analysis to group emission rates for Euro Ⅲ and IV buses, respectively. Then the emissions reductions from Euro Ⅲ to Euro Ⅳ diesel buses were ana- lyzed. Lastly, on-road hot-stabilized emission rate model for diesel buses in Beijing was developed. Through the comparison of the model simulation emission rates with the measured emission rates, the modeled emission results were in good agreement with the measured emission results. In most of the cases, the differences were less than 12 %.展开更多
Analyzing spatiotemporal dynamics of land use and land cover over time is widely recognized as important to better understand and provide solutions for social, economic, and environmental problems, especially in ecolo...Analyzing spatiotemporal dynamics of land use and land cover over time is widely recognized as important to better understand and provide solutions for social, economic, and environmental problems, especially in ecologically fragile region. In this paper, a case study was taken in Zhenlai County, which is a part of farming-pastoral ecotone of Northeast China. This study seeks to use multi-temporal satellite images and other data from various sources to analyze spatiotemporal changes from 1932 to 2005, and applied a quantitative methodology named intensity analysis in the time scale of decades at three levels: time interval, category, and transition. The findings of the case study are as follows: 1) the interval level of intensity analysis revealed that the annual rate of overall change was relatively fast in 1932–1954 and 1954–1976 time intervals. 2) The category level showed that arable land experienced less intensively gains and losses if the overall change was to have been distributed uniformly across the landscape while the gains and losses of forest land, grassland, water, settlement, wetland and other unused land were not consistent and stationary across the four time intervals. 3) The transition level illustrated that arable land expanded at the expense of grassland before 2000 while it gained intensively from wetland from 2000 to 2005. Settlement targets arable land and avoids grassland, water, wetland and other unused land. Besides, the loss of grassland was intensively targeted by arable land, forest land and wetland in the study period while the loss of wetland was targeted by water except for the time interval of 1976–2000. 4) During the early reclamation period, land use change of the study area was mainly affected by the policy, institutional and political factors, followed by the natural disasters.展开更多
In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. ...In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.展开更多
Electic vehicles(EVs)show great potential to cope with the intermittency of renewable energy sources(RES)and provide demand side flexibility required by the smart grid.Furthermore,EVs will increase the electricity con...Electic vehicles(EVs)show great potential to cope with the intermittency of renewable energy sources(RES)and provide demand side flexibility required by the smart grid.Furthermore,EVs will increase the electricity consumption.Large scale integration of EVs will probably have substantial impacts on power systems.This paper presents a methodology to transform driving behavior of person into one of the cars in order to analyze the driving pattern of EVs based on the National Travel Surveys.In the proposed methodology,a statistical process is used to obtain the driving behavior of cars by grouping the survey respondents according to the driving license number and car number,and mapping the households with similar characteristics.The proposed methodology was used to carry out the driving pattern analysis in the Nordic region.The detailed driving requirements and charging/discharging availability of vehicles along the day were obtained.Two types of EV availabilities were studied in this paper considering different charging/discharging conditions of EVs for the power system integration,i.e.EV availability all day and EV availability at home.The results show that the daily driving requirements of the Nordic region are not very intensive.The driving patterns of vehicles in the Nordic region vary on weekdays and weekends.The two types of EV availabilities are quite different from each other.展开更多
基金The Ministry of Science and Technology of China(Grant Nos.2011DFA60650,2012DFA81190,2014DFG71590,2013BAG06B02 and 2013BAG06B04)
文摘This paper examines the energy and environmental benefits within the whole life cycle shifting from traditional gasoline vehicles to electrified advanced vehicles under regional real-world driving behaviors. The advance vehicles focus on family passenger cars and include battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs). The GREET (greenhouse gases, regulated emissions, and energy use in transportation) model is adopted with regional circumstances modifications, especially the UF (utility factors) of PHEVs. The results show that the electrified vehicles offer great benefits concerning energy consumption, greenhouse gas (GHG) emissions as well as urban Particulate Matter 2,5 (PMz.s) emissions. Compared to conventional gasoline vehicles, the life-cycle total energy reduction for advance vehicles is 51% to 57%. There is little difference on energy reduction among the HEVs, PHEVs and BEVs, with the energy mix shifting from petroleum to coal for the stronger electrification. The reductions of GHG emissions are 57% for HEV, 54% to 48% for PHEVs with 10 miles to 40 miles CD range, and 40% for BEV. The life-cycle and local PM2.5 emissions are discussed separately. The life-cycle PM2.5 emissions increase with vehicle electrification and reach a maximum for the BEV which are 5% higher than the conventional vehicle (CV). However, electric vehicles can shift PM2.5 emissions from vehicle operation to upstream operations and help mitigate PM2.5 emissions in urban areas. The local emissions of PHEVs and BEVs can be reduced by 37% to 81% and 100% compared with CVs.
文摘Using a set of measuring system installed on a testing vehicle, 15 criterion numbers, which describe the details of vehicle′s driving pattern and emission characteristic on real road condition of Tianjin, are obtained from a large quantity of raw data. The results show that the characteristic of driving pattern in Tianjin is very different from that of ECE-15 and FTP-75. That is to say, neither of these two emission testing procedures is suitable in China. A new driving cycle is developed which is accordance with the driving pattern of Tianjin.This cycle can be used to evaluate the emission levels of vehicles under real-road condition in laboratory, and can be recommended as a testing procedure used in China.
基金funded by the Energy Policyand Planning Office (EPPO) of Thailand
文摘The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.
基金financially supported by National Natural Science Foundation of China(Grant No. 51179006)China National Funds for Distinguished Young Scientists (Grant No.51125035)+2 种基金National Science Foundation for Innovative Research Group (Grant No. 51121003)the Program for New Century Excellent Talents in University (NECT-10-0235)the Fok Ying Tung Foundation (Grant No. 132009)
文摘Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.
文摘The emergence of new technologies such as GPS,cellphone,Bluetooth device,etc.offers opportunities for collecting high-fidelity temporal-spatial travel data in a cost-effective manner.With the vehicle trajectory data achieved from a smartphone app Metropia,this study targets on exploring the trajectory data and designing the measurements of the driving pattern.Metropia is a recently available mobile traffic app that uses prediction and coordinating technology combined with user rewards to incentivize drivers to cooperate,balance traffic load on the network,and reduce traffic congestion.Speed and celeration(acceleration and deceleration)are obtained from the Metropia platform directly and parameterized as individual and system measurements related to traffic,spatial and temporal conditions.A case study is provided in this paper to demonstrate the feasibility of this approach utilizing the trajectory data from the actual app usage.The driving behaviors at both individual and system levels are quantified from the microscopic speed and celeration records.The results from this study reveal distinct driving behavior pattern and shed lights for further opportunities to identify behavior characteristics beyond safety and environmental considerations.
基金Supported by State Key Laboratory of Engines(SKLE,200906)the National Natural Science Foundation of China(40805053)
文摘A total of 14 in-use diesel buses were selected to conduct emission measurement using a portable emissions measurement system (PEMS) in Beijing. Their instantaneous gaseous emission rates, particular matter (PM) emission rates and driving parameters were obtained. The influences of speed, acceleration and vehicle specific power (VSP) on emissions were analyzed. Based on the relationships between these driving parameters and emissions, 24 driving bins defined by speed, ac- celeration and VSP were constructed with cluster analysis to group emission rates for Euro Ⅲ and IV buses, respectively. Then the emissions reductions from Euro Ⅲ to Euro Ⅳ diesel buses were ana- lyzed. Lastly, on-road hot-stabilized emission rate model for diesel buses in Beijing was developed. Through the comparison of the model simulation emission rates with the measured emission rates, the modeled emission results were in good agreement with the measured emission results. In most of the cases, the differences were less than 12 %.
基金Under the auspices of National Youth Science Foundation of China(No.41601173)China Postdoctoral Science Foundation(No.2016M600954)
文摘Analyzing spatiotemporal dynamics of land use and land cover over time is widely recognized as important to better understand and provide solutions for social, economic, and environmental problems, especially in ecologically fragile region. In this paper, a case study was taken in Zhenlai County, which is a part of farming-pastoral ecotone of Northeast China. This study seeks to use multi-temporal satellite images and other data from various sources to analyze spatiotemporal changes from 1932 to 2005, and applied a quantitative methodology named intensity analysis in the time scale of decades at three levels: time interval, category, and transition. The findings of the case study are as follows: 1) the interval level of intensity analysis revealed that the annual rate of overall change was relatively fast in 1932–1954 and 1954–1976 time intervals. 2) The category level showed that arable land experienced less intensively gains and losses if the overall change was to have been distributed uniformly across the landscape while the gains and losses of forest land, grassland, water, settlement, wetland and other unused land were not consistent and stationary across the four time intervals. 3) The transition level illustrated that arable land expanded at the expense of grassland before 2000 while it gained intensively from wetland from 2000 to 2005. Settlement targets arable land and avoids grassland, water, wetland and other unused land. Besides, the loss of grassland was intensively targeted by arable land, forest land and wetland in the study period while the loss of wetland was targeted by water except for the time interval of 1976–2000. 4) During the early reclamation period, land use change of the study area was mainly affected by the policy, institutional and political factors, followed by the natural disasters.
基金Supported by National Natural Science Foundation of China(No.61774014 and No.60772080)
文摘In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.
基金This work is supported by the Nordic Energy Research(Norden)under the Project‘Nordic Power Road Map 2050:Strategic choices towards carbon neutrality(NORSTRA)’.
文摘Electic vehicles(EVs)show great potential to cope with the intermittency of renewable energy sources(RES)and provide demand side flexibility required by the smart grid.Furthermore,EVs will increase the electricity consumption.Large scale integration of EVs will probably have substantial impacts on power systems.This paper presents a methodology to transform driving behavior of person into one of the cars in order to analyze the driving pattern of EVs based on the National Travel Surveys.In the proposed methodology,a statistical process is used to obtain the driving behavior of cars by grouping the survey respondents according to the driving license number and car number,and mapping the households with similar characteristics.The proposed methodology was used to carry out the driving pattern analysis in the Nordic region.The detailed driving requirements and charging/discharging availability of vehicles along the day were obtained.Two types of EV availabilities were studied in this paper considering different charging/discharging conditions of EVs for the power system integration,i.e.EV availability all day and EV availability at home.The results show that the daily driving requirements of the Nordic region are not very intensive.The driving patterns of vehicles in the Nordic region vary on weekdays and weekends.The two types of EV availabilities are quite different from each other.