特征提取和健康状态的辨识是复杂系统健康状态评估中的关键问题。提出一种新的健康状态评估方法,该方法分为3个步骤:首先,采用经验模态分解(empirical model decomposition,EMD)和奇异值分解(singular value decomposition,SVD)来提取...特征提取和健康状态的辨识是复杂系统健康状态评估中的关键问题。提出一种新的健康状态评估方法,该方法分为3个步骤:首先,采用经验模态分解(empirical model decomposition,EMD)和奇异值分解(singular value decomposition,SVD)来提取振动信号的特征变量。然后,运用马田系统(Mahalanobis-Taguchi system,MTS)构造马氏空间,并对其进行优化,从而降低特征变量的维度。最后,提出了一种健康度(health index,HI)的概念,并且用来对复杂系统健康问题进行评估。该方法成功地应用在轴承的健康状态评估中。展开更多
肌肉疲劳是由运动引起的肌肉最大随意收缩力减小的现象,其研究可应用于生理医学的职业病预防或体育工程的运动员训练等方面。本文采用短时傅里叶变换对肌音信号进行处理,提取频域特征平均功率频率(Mean Power Frequency,MPF)和中值频率(...肌肉疲劳是由运动引起的肌肉最大随意收缩力减小的现象,其研究可应用于生理医学的职业病预防或体育工程的运动员训练等方面。本文采用短时傅里叶变换对肌音信号进行处理,提取频域特征平均功率频率(Mean Power Frequency,MPF)和中值频率(Median Frequency,MDF),研究其与肌肉疲劳程度之间的关系。9名健康的男性志愿者参与了本次试验,采用等值于60%最大随意收缩力(MVC)的力产生恒力肌肉疲劳,同步记录每一位受试者桡侧腕屈肌的肌音信号,对提取的频域参数进行分析。将持续30s的肌肉疲劳过程分为6个时间阶段(每个阶段为5s),并对每个时间阶段内的MPF和MDF计算均值。结果表明,随着肌肉疲劳程度加深,肌音信号的MPF和MDF在每个时间阶段内的均值均呈现近似线性下降的趋势。在30s肌肉疲劳过程中,从第1阶段(1~5s)到第6阶段(26~30s),MPF均值下降了15.8%,MDF均值下降了26.1%。基于短时傅里叶变换提取的MPF和MDF指标能良好地反映疲劳敏感性和稳定性,在评定肌肉静态疲劳方面是较好的参考指标。本文采用的方法和得到的结果为后期更深入地使用肌音信号对肌肉疲劳程度进行量化研究提供了依据。展开更多
文摘特征提取和健康状态的辨识是复杂系统健康状态评估中的关键问题。提出一种新的健康状态评估方法,该方法分为3个步骤:首先,采用经验模态分解(empirical model decomposition,EMD)和奇异值分解(singular value decomposition,SVD)来提取振动信号的特征变量。然后,运用马田系统(Mahalanobis-Taguchi system,MTS)构造马氏空间,并对其进行优化,从而降低特征变量的维度。最后,提出了一种健康度(health index,HI)的概念,并且用来对复杂系统健康问题进行评估。该方法成功地应用在轴承的健康状态评估中。
文摘肌肉疲劳是由运动引起的肌肉最大随意收缩力减小的现象,其研究可应用于生理医学的职业病预防或体育工程的运动员训练等方面。本文采用短时傅里叶变换对肌音信号进行处理,提取频域特征平均功率频率(Mean Power Frequency,MPF)和中值频率(Median Frequency,MDF),研究其与肌肉疲劳程度之间的关系。9名健康的男性志愿者参与了本次试验,采用等值于60%最大随意收缩力(MVC)的力产生恒力肌肉疲劳,同步记录每一位受试者桡侧腕屈肌的肌音信号,对提取的频域参数进行分析。将持续30s的肌肉疲劳过程分为6个时间阶段(每个阶段为5s),并对每个时间阶段内的MPF和MDF计算均值。结果表明,随着肌肉疲劳程度加深,肌音信号的MPF和MDF在每个时间阶段内的均值均呈现近似线性下降的趋势。在30s肌肉疲劳过程中,从第1阶段(1~5s)到第6阶段(26~30s),MPF均值下降了15.8%,MDF均值下降了26.1%。基于短时傅里叶变换提取的MPF和MDF指标能良好地反映疲劳敏感性和稳定性,在评定肌肉静态疲劳方面是较好的参考指标。本文采用的方法和得到的结果为后期更深入地使用肌音信号对肌肉疲劳程度进行量化研究提供了依据。