Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect...Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.展开更多
Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In th...Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In this work,an ion‐polymer‐modified gas‐diffusion electrode is used to tackle this proton limit.It is found that gas diffusion electrode‐Nafion shows an impressive performance of 75.2%Faradaic efficiency in multicarbon products at an industrial current density of 1.16 A/cm^(2).Significantly,in‐depth electrochemical characterizations combined with in situ Raman have been used to determine the full workflow of protons,and it is found that HCO_(3)^(−)acts as a proton pool near the reaction environment,and HCO_(3)^(−)and H_(3)O^(+)are local proton donors that interact with the proton shuttle−SO_(3)^(−)from Nafion.With rich proton hopping sites that decrease the activation energy,a“Grotthuss”mechanism for proton transport in the above system has been identified rather than the“Vehicle”mechanism with a higher energy barrier.Therefore,this work could be very useful in terms of the achievement of industrial CO_(2)reduction fundamentally and practically.展开更多
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou...Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.展开更多
The complexity of application scenarios and the enormous volume of point cloud data make it difficult to quickly and effectively segment the scenario only based on the point cloud.In this paper,to address the semantic...The complexity of application scenarios and the enormous volume of point cloud data make it difficult to quickly and effectively segment the scenario only based on the point cloud.In this paper,to address the semantic segmentation for safety driving of unmanned shuttle buses,an accurate and effective point cloud-based semantic segmentation method is proposed for specified scenarios(such as campus).Firstly,we analyze the characteristic of the shuttle bus scenarios and propose to use ROI selection to reduce the total points in computation,and then propose an improved semantic segmentation model based on Cylinder3D,which improves mean Intersection over Union(mIoU)by 1.3%over the original model on SemanticKITTI data;then,a semantic category division method is proposed for road scenario of shuttle bus and practical application requirements,and then we further simplify the model to improve the efficiency without losing the accuracy.Finally,the nuScenes dataset and the real gathered campus scene data are used to validate and analyze the proposed method.The experimental results on the nuScenes dataset and our data demonstrate that the proposed method performs better than other point cloud semantic segmentation methods in terms of application requirements for unmanned shuttle buses.Which has a higher accuracy(82.73%in mIoU)and a higher computational efficiency(inference speed of 90 ms).展开更多
In the near future, humans will go to Mars. During these interplanetary journeys, astronaut safety will be paramount. This study aims to determine whether the astronauts will be able to launch safely from Mars in a sp...In the near future, humans will go to Mars. During these interplanetary journeys, astronaut safety will be paramount. This study aims to determine whether the astronauts will be able to launch safely from Mars in a space shuttle taking off perpendicularly. This study used kinematics along with equations for calculating atmospheric density and total force on the spacecraft to evaluate these values for each atmospheric layer. Approximations were made for the spacecraft’s dimensions to find the cross-sectional front-view area of the spacecraft and the drag coefficient where verifiable data was unavailable. Although there is data for the dimensions of the spacecraft’s front view, there isn’t any on its area. The total force was found to be significantly lower than 3Gs which ensures a safe take-off for the astronauts and reduces manufacturing costs for assembling new rockets.展开更多
In practical lithium-sulfur batteries(LSBs),the shuttle effect and Li cycling coulombic efficiency(CE) are strongly affected by the physicochemical properties of solid electrolyte interphase(SEI).LiNO_(3) is widely us...In practical lithium-sulfur batteries(LSBs),the shuttle effect and Li cycling coulombic efficiency(CE) are strongly affected by the physicochemical properties of solid electrolyte interphase(SEI).LiNO_(3) is widely used as an additive in electrolytes to build a high-quality SEI,but its self-sacrificial nature limits the ability to mitigate the shuttle effect and stabilize Li anode during long-term cycling.To counteract LiNO_(3) consumption during long-term cycling without using a high initial concentration,inspired by sustainedrelease drugs,we encapsulated LiNO_(3) in lithiated Nafion polymer and added an electrolyte co-solvent(1,1,2,2-tetrafluoroethylene 2,2,2-trifluoromethyl ether) with poor LiNO_(3) solubility to construct highquality and durable F-and N-rich SEI.Theoretical calculations,experiments,multiphysics simulations,and in-situ observations confirmed that the F-and N-rich SEI can modulate lithium deposition behavior and allow persistent repair of SEI during prolonged cycling.Hence,the F-and N-rich SEI improves the Li anode cycling CE to 99.63% and alleviates the shuttle effect during long-term cycling.The lithium anode with sustainable F-and N-rich SEI shows a stable Li plating/stripping over 2000 h at 1 mA cm^(-2).As expected,Li‖S full cells with this SEI achieved a long lifespan of 250 cycles,far exceeding cells with a routine SEI.The Li‖S pouch cell based on F-and N-rich SEI also can achieve a high energy density of about300 Wh kg^(-1) at initial cycles.This strategy provides a novel design for high-quality and durable SEls in LSBs and may also be extendable to other alkali metal batteries.展开更多
This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the co...This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the common faults on shuttle car,this paper concludes that"internal holding torque"is the main cause of faults.Finally,this paper proposes a corresponding optimization design scheme to reduce the impact of"internal torque",and calculates the relevant results through the finite element simulation analysis method.Through these analyses and calculations,it is shown that the method can effectively reduce the probability of failure of traveling transmission system of shuttle car.展开更多
Metal sulfides are a class of promising anode materials for sodium-ion batteries(SIBs)owing to their high theoretical specific capacity.Nevertheless,the reactant products(polysulfides)could dissolve into electrolyte,s...Metal sulfides are a class of promising anode materials for sodium-ion batteries(SIBs)owing to their high theoretical specific capacity.Nevertheless,the reactant products(polysulfides)could dissolve into electrolyte,shuttle across separator,and react with sodium anode,leading to severe capacity loss and safety concerns.Herein,for the first time,gallium(Ga)-based liquid metal(LM)alloy is incorporated with MoS_(2)nanosheets to work as an anode in SIBs.The electron-rich,ultrahigh electrical conductivity,and self-healing properties of LM endow the heterostructured MoS_(2)-LM with highly improved conductivity and electrode integrity.Moreover,LM is demonstrated to have excellent capability for the adsorption of polysulfides(e.g.,Na_(2)S,Na_(2)S_(6),and S_(8))and subsequent catalytic conversion of Na_(2)S.Consequently,the MoS_(2)-LM electrode exhibits superior ion diffusion kinetics and long cycling performance in SIBs and even in lithium/potassium-ion battery(LIB/PIB)systems,far better than those electrodes with conventional binders(polyvinylidene difluoride(PVDF)and sodium carboxymethyl cellulose(CMC)).This work provides a unique material design concept based on Ga-based liquid metal alloy for metal sulfide anodes in rechargeable battery systems and beyond.展开更多
Developing photosensitizers suitable for the cobalt electrolyte and understanding the structure-property relationship of organic dyes is warranted for the dye-sensitized solar cells (DSSCs). The DSSCs incorporating ...Developing photosensitizers suitable for the cobalt electrolyte and understanding the structure-property relationship of organic dyes is warranted for the dye-sensitized solar cells (DSSCs). The DSSCs incorporating tris(1,10-phenanthroline)eobalt(Ⅱ/Ⅲ)-based redox elec- trolyte and four synthesized organic dyes as photosensitizers are described. The photovoltaic performance of these dyes-sensitized solar cells employing the cobalt redox shuttle and the influences of the w-conjugated spacers of organic dyes upon the photovoltage and photocur- rent of mesoscopic titania solar cells are investigated. It is found that organic dyes with thiophene derivates as linkers are suitable for DSSCs employing cobalt electrolytes. DSSCs sensitized with the as-synthesized dyes in combination with the cobalt redox shuttle yield an overall power conversion efficiency of 6.1% under 100 mW/cm2 AM1.5 G illumination.展开更多
By employing the pUC19 as a backbone,the regulatory and signal sequences which encode kanamycin resistance, and mycobacterial plasmid origin of replication (oriM) were cloned into the pUC19. The recombinant E. Coli-my...By employing the pUC19 as a backbone,the regulatory and signal sequences which encode kanamycin resistance, and mycobacterial plasmid origin of replication (oriM) were cloned into the pUC19. The recombinant E. Coli-mycobacteria shuttle expression plasmid PBCG-8000 was constructed. The PBCG-8000 was able to replicate in both E. Coli and mycobacteria (including BCG) systems, and to confer stable kanamycin resistance upon transformants. The study should facilitate the development of BCG and other mycobacteria into multivalent vaccine vectors.展开更多
Lithium-sulfur battery(LSB) has high energy density but is limited by the polysulfides shuttle and dendrite growth during cycling. Herein, a free-standing cellulose nanofiber(CNF) separator is designed and fabricated ...Lithium-sulfur battery(LSB) has high energy density but is limited by the polysulfides shuttle and dendrite growth during cycling. Herein, a free-standing cellulose nanofiber(CNF) separator is designed and fabricated in isopropanol/water suspension through vacuum filtration progress. CNFs with abundant polar oxygen-containing functional groups can chemically immobilize the polysulfides, and suppress the formation of the dendrites by controlling the surface morphology of the SEI on lithium metal in LSB. The isopropanol content in a suspension can fine-tune the pore structure of the membrane to achieve optimal electrochemical performance. The prepared separator displays integrated advantages of an ultrathin thickness(19 μm), lightweight(0.87 mg cm^(-2)), extremely high porosity(98.05%), and decent electrolyte affinity. As a result, the discharge capacity of the LSB with CNF separator at the first and 100 th cycle is 1.4 and 1.3 times that of PP separator, respectively. Our research provides an environmentalfriendly and facile strategy for the preparation of multifunctional separators for LSBs.展开更多
Lithium-sulfur(Li-S) battery is one of the best candidates for the next-generation energy storage system due to its high theoretical capacity(1675 mA h-1),low cost and environment friendliness.However,lithium(Li) dend...Lithium-sulfur(Li-S) battery is one of the best candidates for the next-generation energy storage system due to its high theoretical capacity(1675 mA h-1),low cost and environment friendliness.However,lithium(Li) dendrites formation and polysulfide shuttle effect are two major challenges that limit the commercialization of Li-S batteries.Here we design a facile bifunctional interlayer of gelatin-based fibers(GFs),aiming to protect the Li anode surface from the dendrites growth and also hinder the polysulfide shuttle effect.We reveal that the 3D structural network of GFs layer with abundant polar sites helps to homogenize Li-ion flux,leading to uniform Li-ion deposition.Meanwhile,the polar moieties also immobilize the lithium polysulfides and protect the Li metal from the side-reaction.As a result,the anodeprotected batteries have shown significantly enhanced performance.A high coulombic efficiency of 96% after 160 cycles has been achieved in the Li-Cu half cells.The Li-Li symmetric cells exhibit a prolonged lifespan for 800 h with voltage hysteresis(10 mV).With the as-prepared GFs layer,the Li-S battery shows approximately 14% higher capacity retention than the pristine battery at 0.5 C after 100 cycles.Our work presents that this gelatin-based bi-functional interlayer provides a viable strategy for the manufacturing of advanced Li-S batteries.展开更多
The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP),which has been widely applied in the conventional automated storage and retri...The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP),which has been widely applied in the conventional automated storage and retrieval system(AS/RS).However,the previous mathematical models in conventional AS/RS do not match multi-tier shuttle warehousing systems(MSWS) because the characteristics of parallel retrieval in multiple tiers and progressive vertical movement destroy the foundation of TSP.In this study,a two-stage open queuing network model in which shuttles and a lift are regarded as servers at different stages is proposed to analyze system performance in the terms of shuttle waiting period(SWP) and lift idle period(LIP) during transaction cycle time.A mean arrival time difference matrix for pairwise stock keeping units(SKUs) is presented to determine the mean waiting time and queue length to optimize the storage assignment problem on the basis of SKU correlation.The decomposition method is applied to analyze the interactions among outbound task time,SWP,and LIP.The ant colony clustering algorithm is designed to determine storage partitions using clustering items.In addition,goods are assigned for storage according to the rearranging permutation and the combination of storage partitions in a 2D plane.This combination is derived based on the analysis results of the queuing network model and on three basic principles.The storage assignment method and its entire optimization algorithm method as applied in a MSWS are verified through a practical engineering project conducted in the tobacco industry.The applying results show that the total SWP and LIP can be reduced effectively to improve the utilization rates of all devices and to increase the throughput of the distribution center.展开更多
Canopy air curtain (CAC) technology has been developed by the National Institute for Occupational Safety and Health (NIOSH) for use on continuous miners and subsequently roof bolting machines in underground coal m...Canopy air curtain (CAC) technology has been developed by the National Institute for Occupational Safety and Health (NIOSH) for use on continuous miners and subsequently roof bolting machines in underground coal mines to protect operators of these machines from overexposure to respirable coal mine dust. The next logical progression is to develop a CAC for shuttle cars to protect operators from the same overexposures. NIOSH awarded a contract to Marshall University and J.H. Fletcher to develop the shuttle car CAC. NIOSH conducted laboratory testing to determine the dust control efficiency of the shuttle car CAC. Testing was conducted on two different cab configurations: a center drive similar to that on a Joy 10SC32AA cab model and an end drive similar to that on a Joy 10SC32AB cab model. Three different ventilation velocities were tested-0.61, 2.0, 4.3 rrds (120, 400, and 850 fpm). The lowest, 0.61 m/s (120 fpm), represented the ventilation velocity encountered during loading by the continuous miner, while the 4.3 m/s (850 fpm) velocity represented ventilation velocity airflow over the shuttle car while tramming against ventilation airflow. Test results showed an average of the dust control efficiencies ranging from 74 to 83% for 0.61 m/s (120 fpm), 39%-43% for 2.0 m/s (400 fpm), and 6%-16% for 4.3 m/s (850 fpm). Incorporating an airflow spoiler to the shuttle car CAC design and placing the CAC so that it is located 22.86 cm (9 in.) forward of the operator improved the dust control efficiency to 51%-55% for 4.3 m/s (850 fpm) with minimal impact on dust control efficiencies for lower ventilation velocities. These laboratory tests demonstrate that the newly developed shuttle car CAC has the potential to successfully protect shuttle car operators from coal mine respirable dust overexposures.展开更多
Theconstruction of an integrative shuttle expression vector and potential utility was reported inEscherichiacoliandAnabaena(Nostoc) sp. strain PCC 7120. The vector comprised of the following elements: (a) an intergeni...Theconstruction of an integrative shuttle expression vector and potential utility was reported inEscherichiacoliandAnabaena(Nostoc) sp. strain PCC 7120. The vector comprised of the following elements: (a) an intergenic non-coding region fromAnabaenato facilitate its genomic integration (b) a strong functional PpsbAIpromoter fromAnabaenafor desired gene expression and (c) neomycin phosphotransferase gene with its own promoter for the selection of transfor-mants. The constructed vectorpAnFP was evaluated by cloning, transfer and expression of thegfpgene encoding green fluorescent protein. When theE.coliandAnabaenasp. strain PCC 7120 were transformed, intensive green fluorescence produced by the products of GFP protein was observed. This result indicated that the integrative shuttle vector pAnFP can be promisingly used in genome transformation for expression of heterologous genes inE.coliand microalgae such asAnabaenaandNostocstrains.展开更多
基金support from the “Joint International Laboratory on Environmental and Energy Frontier Materials”“Innovation Research Team of High-Level Local Universities in Shanghai”support from the National Natural Science Foundation of China (22209103)
文摘Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.
基金National Key R&D Program of China,Grant/Award Number:2021YFF0500700Fundamental Research Funds for the Central Universities,Grant/Award Numbers:30921013103,30920041113+1 种基金Jiangsu Natural Science Foundation,Grant/Award Number:BK20190460National Natural Science Foundation of China,Grant/Award Numbers:51888103,52006105,92163124。
文摘Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In this work,an ion‐polymer‐modified gas‐diffusion electrode is used to tackle this proton limit.It is found that gas diffusion electrode‐Nafion shows an impressive performance of 75.2%Faradaic efficiency in multicarbon products at an industrial current density of 1.16 A/cm^(2).Significantly,in‐depth electrochemical characterizations combined with in situ Raman have been used to determine the full workflow of protons,and it is found that HCO_(3)^(−)acts as a proton pool near the reaction environment,and HCO_(3)^(−)and H_(3)O^(+)are local proton donors that interact with the proton shuttle−SO_(3)^(−)from Nafion.With rich proton hopping sites that decrease the activation energy,a“Grotthuss”mechanism for proton transport in the above system has been identified rather than the“Vehicle”mechanism with a higher energy barrier.Therefore,this work could be very useful in terms of the achievement of industrial CO_(2)reduction fundamentally and practically.
基金supported by the National Natural Science Foundation of China(No.52072099)the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province,China(No.LH2022E093)the Team Program of the Natural Science Foundation of Heilongjiang Province,China(No.TD2021E005)。
文摘Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.
基金supported by the National Natural Science Foundation of China(62103064)Sichuan Science and Technology Program(2021YFG0295,2021YFG0133,2022YFN0020,2020YFG0177,2021YFG0187,2021YFN0104,2021YFH0069,2021YJ0086,21ZDY F3598)+2 种基金the Opening Project of Unmanned System Intelligent Perception Control Technology Engineering Laboratory of Sichuan Province(WRXT2020-005)Scientific Research Foundation of CUIT(KYTZ202109)Key Research and Development Support Program of Chengdu Science and Technology Bureau(2022-YF05-01128-SN).
文摘The complexity of application scenarios and the enormous volume of point cloud data make it difficult to quickly and effectively segment the scenario only based on the point cloud.In this paper,to address the semantic segmentation for safety driving of unmanned shuttle buses,an accurate and effective point cloud-based semantic segmentation method is proposed for specified scenarios(such as campus).Firstly,we analyze the characteristic of the shuttle bus scenarios and propose to use ROI selection to reduce the total points in computation,and then propose an improved semantic segmentation model based on Cylinder3D,which improves mean Intersection over Union(mIoU)by 1.3%over the original model on SemanticKITTI data;then,a semantic category division method is proposed for road scenario of shuttle bus and practical application requirements,and then we further simplify the model to improve the efficiency without losing the accuracy.Finally,the nuScenes dataset and the real gathered campus scene data are used to validate and analyze the proposed method.The experimental results on the nuScenes dataset and our data demonstrate that the proposed method performs better than other point cloud semantic segmentation methods in terms of application requirements for unmanned shuttle buses.Which has a higher accuracy(82.73%in mIoU)and a higher computational efficiency(inference speed of 90 ms).
文摘In the near future, humans will go to Mars. During these interplanetary journeys, astronaut safety will be paramount. This study aims to determine whether the astronauts will be able to launch safely from Mars in a space shuttle taking off perpendicularly. This study used kinematics along with equations for calculating atmospheric density and total force on the spacecraft to evaluate these values for each atmospheric layer. Approximations were made for the spacecraft’s dimensions to find the cross-sectional front-view area of the spacecraft and the drag coefficient where verifiable data was unavailable. Although there is data for the dimensions of the spacecraft’s front view, there isn’t any on its area. The total force was found to be significantly lower than 3Gs which ensures a safe take-off for the astronauts and reduces manufacturing costs for assembling new rockets.
基金partially supported by grants from the National Natural Science Foundation of China (52072099, 52102228)Team program of the Natural Science Foundation of Heilongjiang Province, China (TD2021E005)+1 种基金The National general entrepreneurial practice program (202210231088S)The National general innovation training program (202210231076)。
文摘In practical lithium-sulfur batteries(LSBs),the shuttle effect and Li cycling coulombic efficiency(CE) are strongly affected by the physicochemical properties of solid electrolyte interphase(SEI).LiNO_(3) is widely used as an additive in electrolytes to build a high-quality SEI,but its self-sacrificial nature limits the ability to mitigate the shuttle effect and stabilize Li anode during long-term cycling.To counteract LiNO_(3) consumption during long-term cycling without using a high initial concentration,inspired by sustainedrelease drugs,we encapsulated LiNO_(3) in lithiated Nafion polymer and added an electrolyte co-solvent(1,1,2,2-tetrafluoroethylene 2,2,2-trifluoromethyl ether) with poor LiNO_(3) solubility to construct highquality and durable F-and N-rich SEI.Theoretical calculations,experiments,multiphysics simulations,and in-situ observations confirmed that the F-and N-rich SEI can modulate lithium deposition behavior and allow persistent repair of SEI during prolonged cycling.Hence,the F-and N-rich SEI improves the Li anode cycling CE to 99.63% and alleviates the shuttle effect during long-term cycling.The lithium anode with sustainable F-and N-rich SEI shows a stable Li plating/stripping over 2000 h at 1 mA cm^(-2).As expected,Li‖S full cells with this SEI achieved a long lifespan of 250 cycles,far exceeding cells with a routine SEI.The Li‖S pouch cell based on F-and N-rich SEI also can achieve a high energy density of about300 Wh kg^(-1) at initial cycles.This strategy provides a novel design for high-quality and durable SEls in LSBs and may also be extendable to other alkali metal batteries.
基金supported by the Key Project of China Coal Technology and Engineering Group(No.2020-2-TD-ZD003).
文摘This paper firstly introduces the common faults of traveling transmission system of shuttle car.Secondly,by analyzing the characteristics of shuttle car structure,the layout of traveling transmission system and the common faults on shuttle car,this paper concludes that"internal holding torque"is the main cause of faults.Finally,this paper proposes a corresponding optimization design scheme to reduce the impact of"internal torque",and calculates the relevant results through the finite element simulation analysis method.Through these analyses and calculations,it is shown that the method can effectively reduce the probability of failure of traveling transmission system of shuttle car.
基金the financial support from the Australian Research Council (ARC) through Future Fellowship (FT210100298)DECRA Fellowship (DE230101068)+2 种基金Discovery Project (DP230100198 and DP210102215)Linkage Projects (LP220100088 and LP180100722)partially supported by AIIM FOR GOLD Grant (2017, 2018)
文摘Metal sulfides are a class of promising anode materials for sodium-ion batteries(SIBs)owing to their high theoretical specific capacity.Nevertheless,the reactant products(polysulfides)could dissolve into electrolyte,shuttle across separator,and react with sodium anode,leading to severe capacity loss and safety concerns.Herein,for the first time,gallium(Ga)-based liquid metal(LM)alloy is incorporated with MoS_(2)nanosheets to work as an anode in SIBs.The electron-rich,ultrahigh electrical conductivity,and self-healing properties of LM endow the heterostructured MoS_(2)-LM with highly improved conductivity and electrode integrity.Moreover,LM is demonstrated to have excellent capability for the adsorption of polysulfides(e.g.,Na_(2)S,Na_(2)S_(6),and S_(8))and subsequent catalytic conversion of Na_(2)S.Consequently,the MoS_(2)-LM electrode exhibits superior ion diffusion kinetics and long cycling performance in SIBs and even in lithium/potassium-ion battery(LIB/PIB)systems,far better than those electrodes with conventional binders(polyvinylidene difluoride(PVDF)and sodium carboxymethyl cellulose(CMC)).This work provides a unique material design concept based on Ga-based liquid metal alloy for metal sulfide anodes in rechargeable battery systems and beyond.
基金This work was supported by the National Natu- ral Science Foundation of China (No.21072152 and No.21101115).
文摘Developing photosensitizers suitable for the cobalt electrolyte and understanding the structure-property relationship of organic dyes is warranted for the dye-sensitized solar cells (DSSCs). The DSSCs incorporating tris(1,10-phenanthroline)eobalt(Ⅱ/Ⅲ)-based redox elec- trolyte and four synthesized organic dyes as photosensitizers are described. The photovoltaic performance of these dyes-sensitized solar cells employing the cobalt redox shuttle and the influences of the w-conjugated spacers of organic dyes upon the photovoltage and photocur- rent of mesoscopic titania solar cells are investigated. It is found that organic dyes with thiophene derivates as linkers are suitable for DSSCs employing cobalt electrolytes. DSSCs sensitized with the as-synthesized dyes in combination with the cobalt redox shuttle yield an overall power conversion efficiency of 6.1% under 100 mW/cm2 AM1.5 G illumination.
文摘By employing the pUC19 as a backbone,the regulatory and signal sequences which encode kanamycin resistance, and mycobacterial plasmid origin of replication (oriM) were cloned into the pUC19. The recombinant E. Coli-mycobacteria shuttle expression plasmid PBCG-8000 was constructed. The PBCG-8000 was able to replicate in both E. Coli and mycobacteria (including BCG) systems, and to confer stable kanamycin resistance upon transformants. The study should facilitate the development of BCG and other mycobacteria into multivalent vaccine vectors.
基金supported by the National Key Research and Development Program(2018YFB1501500)the National Science Foundation for Excellent Young Scholars of China(21922815)+2 种基金the National Key Research and Development(R&D)Program of China(2020YFB1505800)the Research and Development Project of Key Core and Common Technology of Shanxi Province(2020XXX014)the Fundamental Research Program of Shanxi Province(20210302123008,20210302124101)。
文摘Lithium-sulfur battery(LSB) has high energy density but is limited by the polysulfides shuttle and dendrite growth during cycling. Herein, a free-standing cellulose nanofiber(CNF) separator is designed and fabricated in isopropanol/water suspension through vacuum filtration progress. CNFs with abundant polar oxygen-containing functional groups can chemically immobilize the polysulfides, and suppress the formation of the dendrites by controlling the surface morphology of the SEI on lithium metal in LSB. The isopropanol content in a suspension can fine-tune the pore structure of the membrane to achieve optimal electrochemical performance. The prepared separator displays integrated advantages of an ultrathin thickness(19 μm), lightweight(0.87 mg cm^(-2)), extremely high porosity(98.05%), and decent electrolyte affinity. As a result, the discharge capacity of the LSB with CNF separator at the first and 100 th cycle is 1.4 and 1.3 times that of PP separator, respectively. Our research provides an environmentalfriendly and facile strategy for the preparation of multifunctional separators for LSBs.
基金supported by the National Natural Science Foundation of China (No. 51861165101)。
文摘Lithium-sulfur(Li-S) battery is one of the best candidates for the next-generation energy storage system due to its high theoretical capacity(1675 mA h-1),low cost and environment friendliness.However,lithium(Li) dendrites formation and polysulfide shuttle effect are two major challenges that limit the commercialization of Li-S batteries.Here we design a facile bifunctional interlayer of gelatin-based fibers(GFs),aiming to protect the Li anode surface from the dendrites growth and also hinder the polysulfide shuttle effect.We reveal that the 3D structural network of GFs layer with abundant polar sites helps to homogenize Li-ion flux,leading to uniform Li-ion deposition.Meanwhile,the polar moieties also immobilize the lithium polysulfides and protect the Li metal from the side-reaction.As a result,the anodeprotected batteries have shown significantly enhanced performance.A high coulombic efficiency of 96% after 160 cycles has been achieved in the Li-Cu half cells.The Li-Li symmetric cells exhibit a prolonged lifespan for 800 h with voltage hysteresis(10 mV).With the as-prepared GFs layer,the Li-S battery shows approximately 14% higher capacity retention than the pristine battery at 0.5 C after 100 cycles.Our work presents that this gelatin-based bi-functional interlayer provides a viable strategy for the manufacturing of advanced Li-S batteries.
基金Supported by National Natural Science Foundation of China(Grant No.661403234)Shandong Provincial Science and Techhnology Development Plan of China(Grant No.2014GGX106009)
文摘The current mathematical models for the storage assignment problem are generally established based on the traveling salesman problem(TSP),which has been widely applied in the conventional automated storage and retrieval system(AS/RS).However,the previous mathematical models in conventional AS/RS do not match multi-tier shuttle warehousing systems(MSWS) because the characteristics of parallel retrieval in multiple tiers and progressive vertical movement destroy the foundation of TSP.In this study,a two-stage open queuing network model in which shuttles and a lift are regarded as servers at different stages is proposed to analyze system performance in the terms of shuttle waiting period(SWP) and lift idle period(LIP) during transaction cycle time.A mean arrival time difference matrix for pairwise stock keeping units(SKUs) is presented to determine the mean waiting time and queue length to optimize the storage assignment problem on the basis of SKU correlation.The decomposition method is applied to analyze the interactions among outbound task time,SWP,and LIP.The ant colony clustering algorithm is designed to determine storage partitions using clustering items.In addition,goods are assigned for storage according to the rearranging permutation and the combination of storage partitions in a 2D plane.This combination is derived based on the analysis results of the queuing network model and on three basic principles.The storage assignment method and its entire optimization algorithm method as applied in a MSWS are verified through a practical engineering project conducted in the tobacco industry.The applying results show that the total SWP and LIP can be reduced effectively to improve the utilization rates of all devices and to increase the throughput of the distribution center.
文摘Canopy air curtain (CAC) technology has been developed by the National Institute for Occupational Safety and Health (NIOSH) for use on continuous miners and subsequently roof bolting machines in underground coal mines to protect operators of these machines from overexposure to respirable coal mine dust. The next logical progression is to develop a CAC for shuttle cars to protect operators from the same overexposures. NIOSH awarded a contract to Marshall University and J.H. Fletcher to develop the shuttle car CAC. NIOSH conducted laboratory testing to determine the dust control efficiency of the shuttle car CAC. Testing was conducted on two different cab configurations: a center drive similar to that on a Joy 10SC32AA cab model and an end drive similar to that on a Joy 10SC32AB cab model. Three different ventilation velocities were tested-0.61, 2.0, 4.3 rrds (120, 400, and 850 fpm). The lowest, 0.61 m/s (120 fpm), represented the ventilation velocity encountered during loading by the continuous miner, while the 4.3 m/s (850 fpm) velocity represented ventilation velocity airflow over the shuttle car while tramming against ventilation airflow. Test results showed an average of the dust control efficiencies ranging from 74 to 83% for 0.61 m/s (120 fpm), 39%-43% for 2.0 m/s (400 fpm), and 6%-16% for 4.3 m/s (850 fpm). Incorporating an airflow spoiler to the shuttle car CAC design and placing the CAC so that it is located 22.86 cm (9 in.) forward of the operator improved the dust control efficiency to 51%-55% for 4.3 m/s (850 fpm) with minimal impact on dust control efficiencies for lower ventilation velocities. These laboratory tests demonstrate that the newly developed shuttle car CAC has the potential to successfully protect shuttle car operators from coal mine respirable dust overexposures.
文摘Theconstruction of an integrative shuttle expression vector and potential utility was reported inEscherichiacoliandAnabaena(Nostoc) sp. strain PCC 7120. The vector comprised of the following elements: (a) an intergenic non-coding region fromAnabaenato facilitate its genomic integration (b) a strong functional PpsbAIpromoter fromAnabaenafor desired gene expression and (c) neomycin phosphotransferase gene with its own promoter for the selection of transfor-mants. The constructed vectorpAnFP was evaluated by cloning, transfer and expression of thegfpgene encoding green fluorescent protein. When theE.coliandAnabaenasp. strain PCC 7120 were transformed, intensive green fluorescence produced by the products of GFP protein was observed. This result indicated that the integrative shuttle vector pAnFP can be promisingly used in genome transformation for expression of heterologous genes inE.coliand microalgae such asAnabaenaandNostocstrains.