期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries 被引量:3
1
作者 Xianyu Liu Qiongqiong Lu +1 位作者 Aikai Yang Yitai Qian 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期563-566,共4页
Aqueous zinc-ion batteries(ZIBs)has been regarded as a promising energy storage system for large-scale application due to the advantages of low cost and high safety.However,the growth of Zn dendrite,hydrogen evolution... Aqueous zinc-ion batteries(ZIBs)has been regarded as a promising energy storage system for large-scale application due to the advantages of low cost and high safety.However,the growth of Zn dendrite,hydrogen evolution and passivation issues induce the poor electrochemical performance of ZIBs.Herein,a Na_(3)Zr_(2)Si_(2)PO_(12)(NZSP)protection layer with high ionic conductivity of 2.94 m S/cm on Zn metal anode was fabricated by drop casting approach.The protection layer prevents Zn dendrites formation,hydrogen evolution as well as passivation,and facilitates a fast Zn~(2+)transport.As a result,the symmetric cells based on NZSP-coated Zn show a stable cycling over 1360 h at 0.5 m A/cm^(2)with 0.5 m Ah/cm^(2) and 1000 h even at a high current density of 5 m A/cm^(2) with 2 m Ah/cm^(2).Moreover,the full cells combined with V_(2)O_(5)-based cathode displays high capacities and high rate capability.This work offers a facile and effective approach to stabilizing Zn metal anode for enhanced ZIBs. 展开更多
关键词 Na_(3)Zr_(2)Si_(2)PO_(12) High ionic conductivity drop casting Surface coating Zinc metal anode Aqueous zinc-ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部