期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis of drop deformation dynamics in turbulent flow 被引量:1
1
作者 Stephanie Nachtigall Daniel Zedel Matthias Kraume 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第2期264-277,共14页
Drop breakage and coalescence influence the particle formation in liquid-liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be ... Drop breakage and coalescence influence the particle formation in liquid-liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be neglected were analyzed in this work. Drops passing the turbulent vicinity of a single stirrer blade were investi- gated by high-speed imaging. In order to gain a statistically relevant amount of drops passing the area of interest and corresponding breakage events, at least 1600 droplets were considered for each parameter set of this work. A specially developed fully automatic image analysis based on Matlab was used for the evaluation of the resulting high amount of image data. This allowed the elimination of the time-consuming manual analysis and further- more, allowed the objective evaluation of the drops' behavior. Different deformation parameters were consid- ered in order to describe the drop deformation dynamics properly. Regarding the ratio of both main particle axes (0axes), which was therefore approximated through an ellipse, allowed the determination of very small de- viations from the spherical shape. The perimeter of the particle (0peri) was used for the description of highly de- formed shapes. In this work the results of a higher viscosity paraffin oil (ηd =127 mPa. s) and a low viscosity solvent (petroleum, ηd = 1.7 mPa-s) are presented with and without the addition of SDS to the continuous water phase. All results show that the experimentally determined oscillation but also deformation times underlie a wide spreading. Drop deformations significantly increased not only with increasing droplet viscosity, but also with decreasing interfacial tension. Highly deformed particles of one droplet species were more likely to break than more or less spherical particles. As droplet fragmentation results from a variety of different macro-scale de- formed particles, it is not assumed that a critical deformation value must be reached for the fragmentation pro- cess to occur. Especially for highly deformed particles thin particle filaments are assumed to induce the breakage process and, therefore, be responsible for the separation of drops. 展开更多
关键词 drop deformation drop breakage Liquid-liquid system Turbulent mixing Image analysis High-speed imaging
下载PDF
Rear-Surface Deformation of a Water Drop in Aero-Breakup of Shear Mode
2
作者 易翔宇 朱雨建 +2 位作者 杨基明 王暾 孙明宇 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期92-95,共4页
Deformation of water drops in shock-induced high-speed flows is investigated with a focus to the influence of primitive flow parameters on the rear-surface deformation features. Two typical deformation patterns are di... Deformation of water drops in shock-induced high-speed flows is investigated with a focus to the influence of primitive flow parameters on the rear-surface deformation features. Two typical deformation patterns are discovered through high-speed photography. A simple equation to evaluate the radial acceleration of the drop surface is derived. The combined use of this equation and outer flow simulation makes it possible for us to reconstruct the profiles of the early deformed drops. The results agree well with the experiments. Further analysis shows that the duration of flow establishment with respect to the overall breakup time shapes the rear side profile of the drop. Thereby the ratio of the two times, expressed as the square root of the density ratio, appears to be an effective indicator of the deformation features. 展开更多
关键词 Rear-Surface deformation of a Water drop in Aero-Breakup of Shear Mode
下载PDF
Coalescence behaviour of water droplets in water‐oil interface under pulsatile electric fields 被引量:2
3
作者 Morteza Hosseini 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第9期1147-1153,共7页
In this research, the deformation of water droplets in sunflower oil-interface under pulsatile electric field was studied experimentally. Three types of coalescence were observed:(i) complete coalescence,(ii) incomple... In this research, the deformation of water droplets in sunflower oil-interface under pulsatile electric field was studied experimentally. Three types of coalescence were observed:(i) complete coalescence,(ii) incomplete coalescence and(iii) no-coalescence. The first type is desirable because of leaving no secondary droplets. The second type that produced secondary droplets which caused by necking process, due to extreme elongation of droplets(mostly small droplets), was undesirable; because the small droplets were more difficult to coalesce and remove. The no-coalescence was caused by very fast coalescence and extensive pushing of droplet into the continuous phase. In this work the process was operated with the utilization of a batch cylindrical separator with high voltage system. The lower part of the cylinder was filled with the aqueous phase and its top part was filled with sunflower oil to form an interface between the two phases. The effects of electric field strength,frequency, and waveform types were investigated. It was found that, the ramp-ac waveform was the best waveform, avoiding the production of secondary droplets and in this case the frequency also played an important role. 展开更多
关键词 drop-interface coalescence drops deformation Non-uniform electric field Di-electrophoresis Pulsatile electric field
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部