A computational fluid dynamics(CFD)model was developed to accurately predict the flash reduction process,which is considered an efficient alternative ironmaking process.Laboratory-scale experiments were conducted in d...A computational fluid dynamics(CFD)model was developed to accurately predict the flash reduction process,which is considered an efficient alternative ironmaking process.Laboratory-scale experiments were conducted in drop tube reactors to verify the accuracy of the CFD model.The reduction degree of ore particles was selected as a critical indicator of model prediction,and the simulated and experimental results were in good agreement.The influencing factors,including the particle size(20–110μm),peak temperature(1250–1550°C),and reductive atmosphere(H_(2)/CO),were also investigated.The height variation lines indicated that small particles(50μm)had a longer residence time(3.6 s)than large particles.CO provided a longer residence time(~1.29 s)than H_(2)(~1.09 s).However,both the experimental and analytical results showed that the reduction degree of particles in CO was significantly lower than that in H2 atmosphere.The optimum experimental particle size and peak temperature for the preparation of high-quality reduced iron were found to be 50μm and 1350°C in H2 atmosphere,and40μm and 1550°C in CO atmosphere,respectively.展开更多
This paper applies techniques of containerless processing, drop tube and glass fluxing, to undercool and solidify Ni77P23 alloys. Different diameter spheres were collected at the bottom of a 52-m long drop tube. Both ...This paper applies techniques of containerless processing, drop tube and glass fluxing, to undercool and solidify Ni77P23 alloys. Different diameter spheres were collected at the bottom of a 52-m long drop tube. Both crystalline and amorphous phase were formed in various size specimens due to the different cooling rate. The variation of partial undercooling with bulk undercooling is calculated for the Ni77P23 alloys. The deep undercooling and rapid solidification behaviour of Ni77P23 melts has been analysed with respect to microstructure formation and transition during fluxing and 52-m drop process of undercooled melts.展开更多
The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temp...The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100- 1400 ℃) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for all carbonaceous materials studied, H2 content exhibited the largest part of gasification gaseous products and CH4 had the smallest part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con- version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of all char samples increased with increasing steam/char ratio. For all the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic effects when the gasification reaction of char was held in DTF, The calculating method for the equilibrium shift in this study will be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.展开更多
Rapid solidification is regarded as being an effective method to refine the microstructure and reduce or eliminate the segregation of alloying elements.In this study the microstructures of rapid solidified carbon stee...Rapid solidification is regarded as being an effective method to refine the microstructure and reduce or eliminate the segregation of alloying elements.In this study the microstructures of rapid solidified carbon steel droplets (cooled in silicone oil) with different C contents by drop tube processing were observed.The volumes of droplets were set to be 2 mm×2 mm×2 mm (TM) and 5 mm×5 mm×5 mm (FM).For most samples,the microstructures are nearly the same from the surface to the center region.The microstructures of the FM samples with higher C content are much finer than those of the TM samples,which is the opposite of the situation with the lower C content samples.The distribution of C along the diameter of each sample was detected.The segregation of C was observed in TM samples with higher C contents while not in FM samples.This is regarded as relating to recalescence and the diffusion of C atoms during the solidification process.展开更多
The microstructure development of Pd77.5Au6Si16.5 alloy droplet solidified in a drop tube process was studied. It was found that two distinct microstructures, i.e. (Pd,Au)3Si primary phase and Pd+(Pd,Au)3Si eutectic c...The microstructure development of Pd77.5Au6Si16.5 alloy droplet solidified in a drop tube process was studied. It was found that two distinct microstructures, i.e. (Pd,Au)3Si primary phase and Pd+(Pd,Au)3Si eutectic can be obtained when the droplet diameter is within the range between 2.3~0.4 mm. The morpologies of the (Pd,Au)3Si developed from dendrite trunk-like with single branching only into dendrite cluster-like with ternary branching with the decrease of the droplet diameter. When the droplet diameter is about 0.25 mm, the primary phase (Pd,Au)3Si almost disappears and the microstructure mainly shows Pd+(Pd,Au)3Si eutectic. The morphology of the eutectic transforms from fiber-like to plate-like with the decrease of the droplet diameter in the range between 2.3-0.25 mm. When the droplet diameter is about 0.19 mm, the microstructure is only the single phase of Pd solid solution展开更多
The drop tube technique was performed to achieve rapid solidification of undercooled Al 18%Si hypereutectic alloy. The droplets ranging from 60~1 000 μm in diameter were obtained. The regular polygonal primary Si an...The drop tube technique was performed to achieve rapid solidification of undercooled Al 18%Si hypereutectic alloy. The droplets ranging from 60~1 000 μm in diameter were obtained. The regular polygonal primary Si and lamellar eutectic homogeneously distribute on α (Al) matrix in the droplets larger than 500 μm. While in the droplets smaller than 500 μm the five star primary Si was found, which is often accompanied by some spherical eutectic grains. The different morphologies of primary Si are due to varied undercoolings. Scanning electron microscopy suggests that the spherical eutectic grain is composed of anomalous eutectic in its core and lamellar eutectic radiating outside from its periphery. Such eutectic microstructure is presumed to be the result of combining large undercooling, microgravity with containerless processing during free fall. [展开更多
To explore the heat transfer of micro-droplet during free fall in the drop tube, the falling velocity and microgravity level are calculated. The Newtonian heat transfer formulation is coupled with the classical heat c...To explore the heat transfer of micro-droplet during free fall in the drop tube, the falling velocity and microgravity level are calculated. The Newtonian heat transfer formulation is coupled with the classical heat conduction equation to predict the heat transfer process within micro-droplet. Based on the numerical solution by finite difference method with implicit Euler scheme,the temporal evolution of thermal information inside micro-droplet is obtained including the temperature distribution, cooling rate, temperature difference and gradient. To quantitatively reveal the mechanism how the various factors affect the heat transfer of micro-droplet, the effects of physical properties of liquid metal and cooling gas as well as the micro-droplet size are studied.As the important indicators of heat transfer process, the cooling rate and temperature difference are acquired to systematically investigate the relationship between thermophysical properties and heat transfer process of different metallic micro-droplets.展开更多
The properties of steels can be improved by adding appropriate amount of alloying elements.However,the quality and properties of steels may be affected due to the segregation of the alloying elements.Rapid solidificat...The properties of steels can be improved by adding appropriate amount of alloying elements.However,the quality and properties of steels may be affected due to the segregation of the alloying elements.Rapid solidification was regarded to be an effective method to reduce or eliminate the segregation of alloying elements.While in this paper,the segregation of C and P was also observed in rapid solidified carbon steel droplets (in silicon oil) by drop tube processing.The distributions of alloying elements in 0.2m drop tube samples were similar to those in 50m drop tube samples.While in both 0.2m and 50m drop tube,the segregation of C and P was quite different when the contents of the samples were varied,the segregation profiles were discussed in detail.The microstructures of 50m droplet samples were a little finer than those of 0.2m droplet samples.The solidification speed was approximately the same from the surface to the center of each sample.In high-C samples,the microstructure was also corresponding to the distribution of C.展开更多
Solidification of 0.1―1.0 mm diameter droplets of Fe-66.7 at.%Si alloy was achieved in a 3 m drop tube. The XRD, EDS, and SEM measurements reveal that all the droplets are composed of the primary phase α and the α+...Solidification of 0.1―1.0 mm diameter droplets of Fe-66.7 at.%Si alloy was achieved in a 3 m drop tube. The XRD, EDS, and SEM measurements reveal that all the droplets are composed of the primary phase α and the α+ε eutectic. With decreasing droplet diameter, the growth mode of the primary phase α changes from faceted to nonfaceted growth and the eutectic changes from needle-like to anomalous eutectic. In addition, the width of the primary phase α decreases with decreasing droplet size. The different cooling rates and undercooling levels corresponding to the samples with different sizes are responsible for the morphology changes. The cooling rates of the samples with different diameters during free fall were calculated and their effects on the microstructure formation were discussed. This kind of transition is also found inside the same sample, which is due to the larger cooling rate on the surface than at the center.展开更多
Droplets of Cu-20%Sb hypoeutectic alloy has been rapidly solidified in drop tube within the containerless condition. With the decrease of droplet diameter, undercooling increases and the microstructures of primary cop...Droplets of Cu-20%Sb hypoeutectic alloy has been rapidly solidified in drop tube within the containerless condition. With the decrease of droplet diameter, undercooling increases and the microstructures of primary copper dendrite refines. Undercooling up to 207 K (0.17 TL) is obtained in experiment. Theoretic analysis indicated that, because of the broad temperature range of solidification, the rapid growth of primary copper dendrite is controlled by the solutal diffusion. Judging from the calculation of T0 curve in the phase diagram, it is shown that the critical undercooling of segregationless solidification is △T0=474 K. At the maximum undercooling of 207 K, the growth velocity of primary copper phase exceeds to 37 mm/s, and the distinct solute trapping occurs.展开更多
The solidification microstructure of Al-Ni, Al-Cu, Ag-Cu, Al-Pb and Cu-Co alloys quenched in silicone oil before and after free fall in evacuated 50 m drop tube were investigated contrastively. The effect of micrograv...The solidification microstructure of Al-Ni, Al-Cu, Ag-Cu, Al-Pb and Cu-Co alloys quenched in silicone oil before and after free fall in evacuated 50 m drop tube were investigated contrastively. The effect of microgravity on the solidification process of medium-low-melting-point eutectic, monotectic and peritectic alloys were ana-lyzed and discussed. The results indicated that the effects of microgravity on the eutectic cell shape, the pattern in eutectic cell and the inter-eutectic spacing were different for different types of eutectic systems; the size distribution of Pb particles in Al-5wt% Pb monotectic alloy was significantly changed by microgravity; and the shape of retained primary α-Co phase in Cu-10wt%Co peritectic alloy was also changed by microgravity. These results are beneficial for people to further identify and analyze the solidification behavior of multiphase alloys under microgravity.展开更多
Droplets of Zr41Ti14Cu12.5Ni10Be22.5 glass forming alloys with different sizes are solidified in a drop tube containerless processing. Glass transition behavior, crystallization kinetics, and the phase evolution durin...Droplets of Zr41Ti14Cu12.5Ni10Be22.5 glass forming alloys with different sizes are solidified in a drop tube containerless processing. Glass transition behavior, crystallization kinetics, and the phase evolution during annealing of the Zr41Ti14Cu12.5Ni10Be22.5 glassy spheres are investigated. The experimental results indicate that the apparent activation energy of the glass transition (Eg=435.5 kJ/mol), and the activation energy of the main crystallization reaction (Ep1 = 249.6 kJ/mol) are obviously different from those of bulk glass samples prepared by water quenched (Eg=559.1 kJ/mol and Ep1=192.5 kJ/mol). The difference is discussed in the view point of the atomic configuration of the liquid state of the metallic glass and nucleation mechanism.展开更多
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr...A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.展开更多
基金financially supported by the National Key Research and Development Project(No.2016YFB0601304)the National Natural Science Foundation of China(No.51804030)。
文摘A computational fluid dynamics(CFD)model was developed to accurately predict the flash reduction process,which is considered an efficient alternative ironmaking process.Laboratory-scale experiments were conducted in drop tube reactors to verify the accuracy of the CFD model.The reduction degree of ore particles was selected as a critical indicator of model prediction,and the simulated and experimental results were in good agreement.The influencing factors,including the particle size(20–110μm),peak temperature(1250–1550°C),and reductive atmosphere(H_(2)/CO),were also investigated.The height variation lines indicated that small particles(50μm)had a longer residence time(3.6 s)than large particles.CO provided a longer residence time(~1.29 s)than H_(2)(~1.09 s).However,both the experimental and analytical results showed that the reduction degree of particles in CO was significantly lower than that in H2 atmosphere.The optimum experimental particle size and peak temperature for the preparation of high-quality reduced iron were found to be 50μm and 1350°C in H2 atmosphere,and40μm and 1550°C in CO atmosphere,respectively.
基金Project supported by Hebei province Natural Science Foundation of China (Grant No A200700296)National Natural Science Foundation of China (Grant No 50731005)National Basic Research Program of China (Grant No 2007CB616915/2006CB605201)
文摘This paper applies techniques of containerless processing, drop tube and glass fluxing, to undercool and solidify Ni77P23 alloys. Different diameter spheres were collected at the bottom of a 52-m long drop tube. Both crystalline and amorphous phase were formed in various size specimens due to the different cooling rate. The variation of partial undercooling with bulk undercooling is calculated for the Ni77P23 alloys. The deep undercooling and rapid solidification behaviour of Ni77P23 melts has been analysed with respect to microstructure formation and transition during fluxing and 52-m drop process of undercooled melts.
基金Supported by the National High Technology Research and Development of China(2012AA053101,2011AA050106)the National Key State Basic Research Development Program of China(2010CB227004)the National Natural Science Foundation of China(21376081)
文摘The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube furnace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100- 1400 ℃) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for all carbonaceous materials studied, H2 content exhibited the largest part of gasification gaseous products and CH4 had the smallest part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con- version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of all char samples increased with increasing steam/char ratio. For all the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic effects when the gasification reaction of char was held in DTF, The calculating method for the equilibrium shift in this study will be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.
基金financially supported by the National Natural Science Foundation of China,Project No.51074210
文摘Rapid solidification is regarded as being an effective method to refine the microstructure and reduce or eliminate the segregation of alloying elements.In this study the microstructures of rapid solidified carbon steel droplets (cooled in silicone oil) with different C contents by drop tube processing were observed.The volumes of droplets were set to be 2 mm×2 mm×2 mm (TM) and 5 mm×5 mm×5 mm (FM).For most samples,the microstructures are nearly the same from the surface to the center region.The microstructures of the FM samples with higher C content are much finer than those of the TM samples,which is the opposite of the situation with the lower C content samples.The distribution of C along the diameter of each sample was detected.The segregation of C was observed in TM samples with higher C contents while not in FM samples.This is regarded as relating to recalescence and the diffusion of C atoms during the solidification process.
文摘The microstructure development of Pd77.5Au6Si16.5 alloy droplet solidified in a drop tube process was studied. It was found that two distinct microstructures, i.e. (Pd,Au)3Si primary phase and Pd+(Pd,Au)3Si eutectic can be obtained when the droplet diameter is within the range between 2.3~0.4 mm. The morpologies of the (Pd,Au)3Si developed from dendrite trunk-like with single branching only into dendrite cluster-like with ternary branching with the decrease of the droplet diameter. When the droplet diameter is about 0.25 mm, the primary phase (Pd,Au)3Si almost disappears and the microstructure mainly shows Pd+(Pd,Au)3Si eutectic. The morphology of the eutectic transforms from fiber-like to plate-like with the decrease of the droplet diameter in the range between 2.3-0.25 mm. When the droplet diameter is about 0.19 mm, the microstructure is only the single phase of Pd solid solution
文摘The drop tube technique was performed to achieve rapid solidification of undercooled Al 18%Si hypereutectic alloy. The droplets ranging from 60~1 000 μm in diameter were obtained. The regular polygonal primary Si and lamellar eutectic homogeneously distribute on α (Al) matrix in the droplets larger than 500 μm. While in the droplets smaller than 500 μm the five star primary Si was found, which is often accompanied by some spherical eutectic grains. The different morphologies of primary Si are due to varied undercoolings. Scanning electron microscopy suggests that the spherical eutectic grain is composed of anomalous eutectic in its core and lamellar eutectic radiating outside from its periphery. Such eutectic microstructure is presumed to be the result of combining large undercooling, microgravity with containerless processing during free fall. [
基金supported by National Natural Science Foundation of China(Grant Nos.51327901,51474175,51522102 and 51734008)
文摘To explore the heat transfer of micro-droplet during free fall in the drop tube, the falling velocity and microgravity level are calculated. The Newtonian heat transfer formulation is coupled with the classical heat conduction equation to predict the heat transfer process within micro-droplet. Based on the numerical solution by finite difference method with implicit Euler scheme,the temporal evolution of thermal information inside micro-droplet is obtained including the temperature distribution, cooling rate, temperature difference and gradient. To quantitatively reveal the mechanism how the various factors affect the heat transfer of micro-droplet, the effects of physical properties of liquid metal and cooling gas as well as the micro-droplet size are studied.As the important indicators of heat transfer process, the cooling rate and temperature difference are acquired to systematically investigate the relationship between thermophysical properties and heat transfer process of different metallic micro-droplets.
基金the National Natural Science Foundation of China,for their financial supports to Project No. 51074210
文摘The properties of steels can be improved by adding appropriate amount of alloying elements.However,the quality and properties of steels may be affected due to the segregation of the alloying elements.Rapid solidification was regarded to be an effective method to reduce or eliminate the segregation of alloying elements.While in this paper,the segregation of C and P was also observed in rapid solidified carbon steel droplets (in silicon oil) by drop tube processing.The distributions of alloying elements in 0.2m drop tube samples were similar to those in 50m drop tube samples.While in both 0.2m and 50m drop tube,the segregation of C and P was quite different when the contents of the samples were varied,the segregation profiles were discussed in detail.The microstructures of 50m droplet samples were a little finer than those of 0.2m droplet samples.The solidification speed was approximately the same from the surface to the center of each sample.In high-C samples,the microstructure was also corresponding to the distribution of C.
基金supported by the National Natural Science Foundation of China(Grant Nos.50325103 and 50171059).
文摘Solidification of 0.1―1.0 mm diameter droplets of Fe-66.7 at.%Si alloy was achieved in a 3 m drop tube. The XRD, EDS, and SEM measurements reveal that all the droplets are composed of the primary phase α and the α+ε eutectic. With decreasing droplet diameter, the growth mode of the primary phase α changes from faceted to nonfaceted growth and the eutectic changes from needle-like to anomalous eutectic. In addition, the width of the primary phase α decreases with decreasing droplet size. The different cooling rates and undercooling levels corresponding to the samples with different sizes are responsible for the morphology changes. The cooling rates of the samples with different diameters during free fall were calculated and their effects on the microstructure formation were discussed. This kind of transition is also found inside the same sample, which is due to the larger cooling rate on the surface than at the center.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 59901009 and 50101010) Huo Yingdong Education Foundation (Grant No. 71044).
文摘Droplets of Cu-20%Sb hypoeutectic alloy has been rapidly solidified in drop tube within the containerless condition. With the decrease of droplet diameter, undercooling increases and the microstructures of primary copper dendrite refines. Undercooling up to 207 K (0.17 TL) is obtained in experiment. Theoretic analysis indicated that, because of the broad temperature range of solidification, the rapid growth of primary copper dendrite is controlled by the solutal diffusion. Judging from the calculation of T0 curve in the phase diagram, it is shown that the critical undercooling of segregationless solidification is △T0=474 K. At the maximum undercooling of 207 K, the growth velocity of primary copper phase exceeds to 37 mm/s, and the distinct solute trapping occurs.
文摘The solidification microstructure of Al-Ni, Al-Cu, Ag-Cu, Al-Pb and Cu-Co alloys quenched in silicone oil before and after free fall in evacuated 50 m drop tube were investigated contrastively. The effect of microgravity on the solidification process of medium-low-melting-point eutectic, monotectic and peritectic alloys were ana-lyzed and discussed. The results indicated that the effects of microgravity on the eutectic cell shape, the pattern in eutectic cell and the inter-eutectic spacing were different for different types of eutectic systems; the size distribution of Pb particles in Al-5wt% Pb monotectic alloy was significantly changed by microgravity; and the shape of retained primary α-Co phase in Cu-10wt%Co peritectic alloy was also changed by microgravity. These results are beneficial for people to further identify and analyze the solidification behavior of multiphase alloys under microgravity.
基金This work was supportedby the National Natural Science Foundation of China (Grant Nos. 59889102, 10004014 and 50171077).
文摘Droplets of Zr41Ti14Cu12.5Ni10Be22.5 glass forming alloys with different sizes are solidified in a drop tube containerless processing. Glass transition behavior, crystallization kinetics, and the phase evolution during annealing of the Zr41Ti14Cu12.5Ni10Be22.5 glassy spheres are investigated. The experimental results indicate that the apparent activation energy of the glass transition (Eg=435.5 kJ/mol), and the activation energy of the main crystallization reaction (Ep1 = 249.6 kJ/mol) are obviously different from those of bulk glass samples prepared by water quenched (Eg=559.1 kJ/mol and Ep1=192.5 kJ/mol). The difference is discussed in the view point of the atomic configuration of the liquid state of the metallic glass and nucleation mechanism.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL-ChE-18B03)the Municipal Science and Technology Commission of Tianjin (No. 2009ZCKFGX01900)
文摘A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.