Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorti...Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorting (MACS) system, and then liposome-mediated MDR1 gene was transferred into bone marrow CD34+ cells. Fluorescence-activated cell sorter was used to evaluate the expression and functional activity of P-glycoprotein (P-gp) encoded by MDR1 gene. It was found that the purity of bone marrow CD34+ cells was approximately (91±4.56) % and recovery rate was (72.3±2.36) % by MACS. The expression of P-gp in the transfected CD34+cells was obviously higher than that in non-transfected CD34+ cells. The amount of P-gp in non-transfected CD34+ cells was (11.2±2.2) %, but increased to (23.6±2.34) % 48 h after gene transfection (P<0.0l). The amount of P-gp was gradually decreased to the basic level one week later. The accumulation and extrusion assays showed that the overexpression of P-gp could efflux Rh-123 out of cells and there was low fluorescence within the transfected cells. The functional activity of P-gp could be inhibited by 10 μg/ml verapamil. It was suggested that the transient and highly effective expression and functional activity of P-gp could be obtained by liposome-mediated MRD1 transferring into human normal bone marrow CD34+ cells.展开更多
Introduction: Access to antiretroviral treatment (ART) in resource-limited countries has increased signif-icantly but scaling up ART into rural areas is more recent and information on treatment outcome in rural areas ...Introduction: Access to antiretroviral treatment (ART) in resource-limited countries has increased signif-icantly but scaling up ART into rural areas is more recent and information on treatment outcome in rural areas is still very limited. We reported here virological outcome and drug resistance in ART in rural settings in Togo. Methods: HIV-1 infected adults (≥18 years) and infants were enrolled in routine medical visit at 12 on first-line ART in three HIV care centers. Epidemiological and demographic information and data on ART history were collected. Viral load (VL) was determined and genotypic drug resistance testing was performed on all samples with viral load above 1000 copies/ml. Results: 102 adult patients and 27 infants were consecutively enrolled. Virological failure was observed in 28 (21.5%) patients. For 25/28 patients, sequencing was successful and drug resistance mutations were observed in 23 (92%) of them. The global prevalence of drug resistance in the study population was thus at least 17.8% (23/129), with 7 (6.9%) patients infected with HIV strains that are resistant to two of the three first-line antiretroviral (ARVs) drugs and 9 (8.3%) to all three first-line ARVs. As expected, the observed drug resistance mutations were mainly associated with the drugs used in first line regimens, zidovudine, lamivudine and effavirenz/nevirapine but several patients accumulated high numbers of mutations and developed also cross-resistance to abacavir, didanosine or the new non-nucleoside reverse transcriptase inhibitor drugs, like etravirine and rilpivirine. Conclusion: The observations on ART treatment outcome from ART clinics in rural areas are the same as observed in previous observations in Lomé, the capital city. Although access to viral load will improve treatment outcome, better programme management and implementation of actions to improve factors as patient adherence, drugs stock-outs and lost to follow-up are also essential.展开更多
Context: The Human Immunodeficiency Virus (HIV) continues to be the main public health challenge in Gabon. The latest studies highlight a high rate of virological failure and HIV drug resistance in semi-rural Gabon. I...Context: The Human Immunodeficiency Virus (HIV) continues to be the main public health challenge in Gabon. The latest studies highlight a high rate of virological failure and HIV drug resistance in semi-rural Gabon. In Libreville, virological failure data is sparse, data on HIV drug resistance for the former first line and new first-line regimen is lacking. Methods: Between January 28<sup>th</sup>, 2019, and January 31<sup>st</sup>, 2020, we received patient living with HIV (PLWHA) for CD4 counts, HIV-1 viral load, and/or genotyping of HIV-1 mutation drug resistance. We used the BD FACSPresto for CD4 count, the Biocentric Generic HIV viral load test for HIV-1 quantification, and the HIV-1 drug resistance mutation genotyping (ARNS protocol). Results: A total of 1129 HIV-1 patients have been enrolled for this study. The median age was 46 years old and the median of CD4 was 386 cells per cubic millimeter. The virological suppression success was observed at 62.7% of patients on the former first line regimen and 70.6% of the patient on DBR. We successfully amplified and analyzed 76 sequences and noticed the presence of the nineteen different subtypes with the predominance of the subtypes CRF02-AG (37.95%), followed by subtype A (22.3%). For HIV drug resistance analyses, 108 (65.1%) had resistance mutation to nucleoside reverse transcriptase inhibitors (NRTIs);of these, 91 (84%) present M184V/I. When looking for NNRTI mutations, 119 (71.7%) sequences had at least one mutation. Of these, 82 had K103N (68.9%), representing the main NNRTI mutations. The pattern showing the high level of resistance (HLR) in all molecules of NRTIs and NNRTIs, except for the TDF (intermediate resistance) was M41L-E44DL74I-M184-L210W-T215Y-K101P-K103N-V106I. Conclusion: This report paints a picture of a relatively female-dominated HIV-infected Gabonese population with a low level of immunity. The level of drug resistance with the former first-line regimen suggests the need to monitor the drug Dolutegravir resistance.展开更多
AIM To observe the drug sensitizing effect andrelated mechanisms of fas gene transduction onhuman drug-resistant gastric cancer cellSGC7901/VCR(resistant to Vincristine).METHODS The cell cycle alteration wasobserved b...AIM To observe the drug sensitizing effect andrelated mechanisms of fas gene transduction onhuman drug-resistant gastric cancer cellSGC7901/VCR(resistant to Vincristine).METHODS The cell cycle alteration wasobserved by FACS.The sensitivity of gastriccancer cells to apoptosis was determined by invitro apoptosis assay.The drug sensitization ofcells to several anti-tumor drugs was observedby MTT assay.Immunochemical method wasused to show expression of P-gp and Topo Ⅱ ingastric cancer cells.RESULTS Comparing to SGC7901 and pBK-SGC7901/VCR,fas-SGC7901/VCR showeddecreasing G2 cells and increasing S cells,theG2 phase fraction of pBK-SGC7901/VCR wasabout 3.0 times that of fas-SGC7901/VCR,but Sphase fraction of fas-SGC7901/VCR was about1.9 times that of pBK-SGC7901/VCR,indicatingS phase arrest of fas-SGC7901/VCR.FACS alsosuggested apoptosis of fas-SGC7901/VCR,fas-SGC7901/VCR was more sensitive to apoptosisinducing agent VM-26 than pBK-SGC7901/VCR.MTT assay showed increased sensitization offas-SGC7901/VCR to DDP,MMC and 5-FU,butsame sensitization to VCR according to pBK-SGC7901/VCR.SGC7901,pBK-SGC7901/ VCRand fas-SGC7901/VCR had positively stainedTopo Ⅱ equally.P-gp staining in pBK- SGC7901/VCR was stronger than in SG07901,but there was little staining of P-gp in fas.SGC7901/VCR.CONCLUSION fas gene transduction couldreverse the MDR of human drug-resistant gastriccancer cell SGC7901/VCR to a degree,possiblybecause of higher sensitization to apoptosis anddecreased expression of P-gp.展开更多
Multiple myeloma(MM) is a cancer caused by uncontrolled proliferation of antibody-secreting plasma cells in bone marrow, which represents the second most common hematological malignancy. MM is a highly heterogeneous d...Multiple myeloma(MM) is a cancer caused by uncontrolled proliferation of antibody-secreting plasma cells in bone marrow, which represents the second most common hematological malignancy. MM is a highly heterogeneous disease and can be classified into a spectrum of subgroups based on their molecular and cytogenetic abnormalities. In the past decade, novel therapies, especially, the first-in-class proteasome inhibitor bortezomib, have been revolutionary for the treatment of MM patients. Despite these remarkable achievements, myeloma remains incurable with a high frequency of patients suffering from a relapse, due to drug resistance. Mutation in the proteasome β5-subunit(PSMB5) was found in a bortezomib-resistant cell line generated via long-term coculture with increasing concentrations of bortezomib in 2008, but their actual implication in drug resistance in the clinic has not been reported until recently. A recent study discovered four resistance-inducing PSMB5 mutations from a relapsed MM patient receiving prolonged bortezomib treatment. Analysis of the dynamic clonal evolution revealed that two subclones existed at the onset of disease, while the other two subclones were induced. Protein structural modeling and functional assays demonstrated that all four mutations impaired the binding of bortezomib to the 20 S proteasome, conferring different degrees of resistance. The authors further demonstrated two potential approaches to overcome drug resistance by using combination therapy for targeting proteolysis machinery independent of the 20 S proteasome.展开更多
INTRODUCTIONDevelopment of drug-resistance to chemotherapyand subsequent metastasis of tumor are primarilyresponsible for treatment failure and the death fromcancer. There have been many previous studies onthe relatio...INTRODUCTIONDevelopment of drug-resistance to chemotherapyand subsequent metastasis of tumor are primarilyresponsible for treatment failure and the death fromcancer. There have been many previous studies onthe relationship between expression of multidrugresistance (MDR) phenotype P-glycoprotein (P-gp)and the malignant properties of tumors, but theresults are often conflicting[1-8]. The difference intumor types or MDR phenotype induced by specificagents might account for this discrepancy. Taxotere(TXT), a member of the family of taxanes, hasantitumor activity through its effect of promotingthe polymerization of tubulin[9,10].展开更多
BACKGROUND: Multidrug resistance is a major obstacle in cancer chemotherapy. We examined whether the antisense RNA of multidrug resistance gene 1 (mdr1) could reverse multidrug resistance in the human hepatocellular c...BACKGROUND: Multidrug resistance is a major obstacle in cancer chemotherapy. We examined whether the antisense RNA of multidrug resistance gene 1 (mdr1) could reverse multidrug resistance in the human hepatocellular carcinoma (HCC) cell line SMMC7721/ADM. METHODS: The recombinant adenoviruses pAdEasy- GFP-ASmdr1 product was produced by the adenoviral vector AdEasy system, which can express antisense RNA against the mdr1 gene. Following that, the recombinant adenovirus was transfected into the P-glycoprotein- producing multidrug resistance cell line, SMMC7721/ADM human HCC cells resistant to adriamycin (ADM) and daunorubicin (DNR). In order to investigate the reversal of multidrug resistance phenotype, we measured the expression of mdr1 mRNA by RT-PCR and the production of P-glycoprotein by flow cytometry. The sensitivities for ADM and DNR SMMC7721/ADM cells were examined by [3-(4, 5-dimethylthi-azol-2-yl)-2,5 diphenyl-terazolium bromide] (MTT) analysis. RESULTS: The low-level expression of mdr1 mRNA and P-glycoprotein production were observed in parental sensitive cells SMMC/7721 in addition to the overexpressionof mdr1 mRNA and P-glycoprotein in SMMC7721/ADM cells. The transfection of antisense-RNA into SMMC7721/ ADM cells resulted in decreases of mdr1 mRNA and P-glycoprotein, but increase of drug sensitivities. The sensitivities of transfected SMMC7721/ADM cells to ADM and DNR in IC50 reduced by 31.25% and 62.96% respectively. CONCLUSIONS: Mdr1 antisense RNA can increase the sensitivities of SMMC7721/ADM cells to anticancer drug by decreasing the expression of the mdr1 gene and inhibiting P-glycoprotein expression. This strategy may be applicable to cancer patients with P-glycoportein mediated multidrug resistance.展开更多
Objective: To investigate the mechanism of resistance and reversal effect of ligustrazine and cyclosporin A in cisplatin--induced multidrug resistance ovarian cancer cell line 3Ao/cDDP. Methods: Using the correspondi...Objective: To investigate the mechanism of resistance and reversal effect of ligustrazine and cyclosporin A in cisplatin--induced multidrug resistance ovarian cancer cell line 3Ao/cDDP. Methods: Using the corresponding dose calculated from clinical chemotherapy at 30 mg cisplatin per cycle, we established 3Ao/cDDP with 3Ao exposed at regular intervals and repeatedly to high-level concentration of cisplatin at 10 mg/ml for 24 hours each time. Expressions of LRP, MRP, P-gp, GSTp and TopoII were quantitatively detected with FCM. For drug resistance reversal, cyclosporin A and ligustrazine were administered singly or in combination at the maximal dose without cytotoxicity. Inhibition rates were determined by MTT assay. Results: 3Ao/cDDP was established after 4.5 months, with resistance factor 1.6 which was similar to clinical resistance degree. Low expression levels of MRP and P-gp were found in both 3Ao and 3Ao/cDDP (P>0.05), and LRP and GSTp expression levels in 3Ao/cDDP were significantly higher than those in 3Ao (P<0.005 and P<0.05, respectively), and TopoII in 3Ao/cDDP was significantly lower vs 3Ao (P<0.05). The inhibition rate of cDDP was 20.807±0.015%, cDDP plus ligustrazine 27.421±0.07% (P>0.05 vs cDDP), cDDP plus cyclosporin A 49.635±0.021% (P<0.01 vs cDDP), and cDDP plus ligustrazine and cyclosporin A 58.861±0.014% (P<0.01 vs cDDP). Conclusions: 3Ao/cDDP, induced by cisplatin and established by imitating the characteristics of clinical chemotherapy for epithelial ovarian cancer, was an ideal model for investigation of cisplatin resistance in vitro. Cisplatin resistance in 3Ao/cDDP could be accounted for by higher LRP, GSTp and lower TopoII expression and was not associated with MRP or P-gp. Ligustrazine had no significant reversal effect on cisplatin resistance, but cyclosporin A could reverse the resistance effectively.展开更多
Multiple drug resistance(MDR)is a tough problem in developing hepatocellular carcinoma(HCC)therapy.Here,we developed TPGS-coated cationic liposomes with Bcl-2 siRNA corona to load doxorubicin(Dox)i.e.,Bcl-2 siRNA/Dox-...Multiple drug resistance(MDR)is a tough problem in developing hepatocellular carcinoma(HCC)therapy.Here,we developed TPGS-coated cationic liposomes with Bcl-2 siRNA corona to load doxorubicin(Dox)i.e.,Bcl-2 siRNA/Dox-TPGS-LPs,to enhance anticancer effect of Dox in HCC-MDR.TPGS i.e.,d-α-tocopheryl polyethylene glycol 1000 succinate,inhibited Pglycoprotein(P-gp)efflux pump and Bcl-2 siRNA suppressed anti-apoptotic Bcl-2 protein.The Bcl-2 siRNA loaded in the liposomal corona was observed under transmission electron microscopy.The stability and hemolysis evaluation demonstrated Bcl-2 siRNA/Dox-TPGSLPs had good biocompatibility and siRNA-corona could protect the liposomal core to avoid the attachment of fetal bovine serum.In drug-resistant cells,TPGS effectively prolonged intracellular Dox retention time and siRNA-corona did improve the internalization of Dox from liposomes.In vitro and in vivo anticancer effect of this dual-functional nanostructure was examined in HCC-MDR Bel7402/5-FU tumor model.MTT assay confirmed the IC50 value of Dox was 20–50 fold higher in Bel7402/5-FU MDR cells than that in sensitive Bel7402 cells.Bcl-2 siRNA corona successfully entered the cytosol of Bel7402/5-FU MDR cells to downregulate Bcl-2 protein levels in vitro and in vivo.Bcl-2 siRNA/Dox-TPGS-LPs showed superior to TPGS-(or siRNA-)linked Dox liposomes in cell apoptosis and cytotoxicity assay in Bel7402/5-FU MDR cells,and 7-fold greater effect than free Dox in tumor growth inhibition of Bel7402/5-FU xenograft nude mice.In conclusion,TPGS-coated cationic liposomes with Bcl-2 siRNA corona had the capacity to inhibit MDR dual-pathways and subsequently improved the anti-tumor activity of the chemotherapeutic agent co-delivered to a level that cannot be achieved by inhibiting a MDR single way.展开更多
In order to investigate the relationship between the expression of cyclin A and drug resistance in adult patients with acute leukemia (AL), the mRNA expression of cyclin A, mdr1, TopⅡ α , bcl-2 was detected in 6...In order to investigate the relationship between the expression of cyclin A and drug resistance in adult patients with acute leukemia (AL), the mRNA expression of cyclin A, mdr1, TopⅡ α , bcl-2 was detected in 64 adult patients with AL and 20 normal controls by semi-reverse transcription polymerse chain reaction (semi-RT-PCR). It was found that the cyclin A and TopⅡ α mRNA expression levels in drug resistant group were significantly lower than in sensitive group ( P <0.01). Under the same experimental condition no cyclin A mRNA expression was detectable in all normal controls. The mdr1 and bcl-2 mRNA expression levels in resistant group were significantly higher than in sensitive group ( P <0.01). cyclin A and TopⅡ α gene expression levels were closely correlated ( r s =+0.794, P=0.000, n =64) in all AL patients, but cyclin A was not correlated with mdr1 and bcl-2 gene expression levels. In drug resistant group there was a negative correlation between the gene expression levels of cyclin A and mdr1 ( r s =-0.337, P=0.029 ). The 10 AL patients with positive lower expression of both cyclin A and TopⅡ α were all resistant to drugs. Logistic regression of Binary analysis showed the correlation between the lower expression of cyclin A and drug resistance. It was concluded that lower expression of cyclin A gene might be an unfavorable prognostic factor for patients with AL, and detection of both cyclin A and TopⅡ α gene expression would predict drug resistance in AL patients.展开更多
When microarray gene expression data are used to predict multiple drug resistance(MDR)phenotypes for anticancer drugs,the normalization strategy and the quality of the selected signature genes are usually the main cau...When microarray gene expression data are used to predict multiple drug resistance(MDR)phenotypes for anticancer drugs,the normalization strategy and the quality of the selected signature genes are usually the main causes of inconsistency among different experiments.A stable statistical drug response prediction model is urgently required in oncology.In this study,the microarray gene expression data of multiple cancer cell lines with MDR was analyzed.For each probe-set,the expression value was defined as present/absent(1/0)and was classified into a gene set defined with protein domain organization(PDO).After employing the gene content method of phylogenetic analysis,a phylogenetic model(cell tree)for MDR phenotype prediction was built at the PDO gene set level.The results indicate that classification of cancer cell lines is predominantly affected by both the histopa-thological features and the MDR phenotype(paclitaxel and vinblastine).When applying this model to predict the MDR phenotype of independent samples,the phylogenetic model performs better than signature gene models.Although the utility of our procedure is limited due to sample heterogeneity,it still has potential application in MDR research,especially for hematological tumors or established cell lines.展开更多
Multiple myeloma(MM)is a hematological tumor with high mortality and recurrence rate.Carfilzomib is a new-generation proteasome inhibitor that is used as the first-line therapy for MM.However,the development of drug r...Multiple myeloma(MM)is a hematological tumor with high mortality and recurrence rate.Carfilzomib is a new-generation proteasome inhibitor that is used as the first-line therapy for MM.However,the development of drug resistance is a pervasive obstacle to treating MM.Therefore,elucidating the drug resistance mechanisms is conducive to the formulation of novel therapeutic therapies.To elucidate the mechanisms of carfilzomib resistance,we retrieved the GSE78069 microarray dataset containing carfilzomib-resistant LP-1 MM cells and parental MM cells.Differential gene expression analyses revealed major alterations in the major histocompatibility complex(MHC)and cell adhesion molecules.The upregulation of the tumor necrosis factor(TNF)receptor superfamily member 1A(TNFRSF1A)gene was accompanied by the downregulation of MHC genes and cell adhesion molecules.Furthermore,to investigate the roles of these genes,we established a carfilzomib-resistant cell model and observed that carfilzomib resistance induced TNFRSF1A overexpression and TNFRSF1A silencing reversed carfilzomib resistance and reactivated the expression of cell adhesion molecules.Furthermore,TNFRSF1A silencing suppressed the tumorigenesis of MM cells in immunocompetent mice,indicating that TNFRSF1A may lead to carfilzomib resistance by dampening antitumor immunity.Furthermore,our results indicated that TNFRSF1A overexpression conferred carfilzomib resistance in MM cells and suppressed the expression of MHC genes and cell adhesion molecules.The suppression of MHC genes and cell adhesion molecules may impair the interaction between immune cells and cancer cells to impair antitumor immunity.Future studies are warranted to further investigate the signaling pathway underlying the regulatory role of TNFRSF1A in MM cells.展开更多
Great progress has been made in improving survival in multiple myeloma(MM)patients over the last 30 years.New drugs have been introduced and complete responses are frequently seen.However,the majority of MM patients d...Great progress has been made in improving survival in multiple myeloma(MM)patients over the last 30 years.New drugs have been introduced and complete responses are frequently seen.However,the majority of MM patients do experience a relapse at a variable time after treatment,and ultimately the disease becomes drug-resistant following therapies.Recently,minimal residual disease(MRD)detection has been introduced in clinical trials utilizing novel therapeutic agents to measure the depth of response.MRD can be considered as a surrogate for both progression-free and overall survival.In this perspective,the persistence of a residual therapy-resistant myeloma plasma cell clone can be associated with inferior survivals.The present review gives an overview of drug resistance in MM,i.e.,mutation ofβ5 subunit of the proteasome;upregulation of pumps of efflux;heat shock protein induction for proteasome inhibitors;downregulation of CRBN expression;deregulation of IRF4 expression;mutation of CRBN,IKZF1,and IKZF3 for immunomodulatory drugs and decreased target expression;complement protein increase;sBCMA increase;and BCMA down expression for monoclonal antibodies.Multicolor flow cytometry,or next-generation flow,and next-generation sequencing are currently the techniques available to measure MRD with sensitivity at 10-5.Sustained MRD negativity is related to prolonged survival,and it is evaluated in all recent clinical trials as a surrogate of drug efficacy.展开更多
Multiple myeloma(MM)is a plasma cell disorder typically characterized by abundant synthesis of clonal immunoglobulin or free light chains.Although incurable,a deeper understanding of MM pathobiology has fueled major t...Multiple myeloma(MM)is a plasma cell disorder typically characterized by abundant synthesis of clonal immunoglobulin or free light chains.Although incurable,a deeper understanding of MM pathobiology has fueled major therapeutical advances over the past two decades,significantly improving patient outcomes.Proteasome inhibitors,immunomodulatory drugs,and monoclonal antibodies are among the most effective anti-MM drugs,targeting not only the cancerous cells,but also the bone marrow microenvironment.However,de novo resistance has been reported,and acquired resistance is inevitable for most patients over time,leading to relapsed/refractory disease and poor outcomes.Sustained protein synthesis coupled with impaired/insufficient proteolytic mechanisms makes MM cells exquisitely sensitive to perturbations in protein homeostasis,offering us the opportunity to target this intrinsic vulnerability for therapeutic purposes.This review highlights the scientific rationale for the clinical use of FDA-approved and investigational agents targeting protein homeostasis in MM.展开更多
BACKGROUND Polyostotic fibrous dysplasia(PFD)is an uncommon developmental bone disease in which normal bone and marrow are replaced by pseudotumoral tissue.The etiology of PFD is unclear,but it is generally thought to...BACKGROUND Polyostotic fibrous dysplasia(PFD)is an uncommon developmental bone disease in which normal bone and marrow are replaced by pseudotumoral tissue.The etiology of PFD is unclear,but it is generally thought to be caused by sporadic,post-zygotic mutations in the GNAS gene.Herein,we report the case of a young female with bone pain and lesions consistent with PFD,unique physical findings,and gene mutations.CASE SUMMARY A 27-year-old female presented with unbearable bone pain in her left foot for 4 years.Multiple bone lesions were detected by radiographic examinations,and a diagnosis of PFD was made after a biopsy of her left calcaneus with symptoms including pre-axial polydactyly on her left hand and severe ophthalmological problems such as high myopia,vitreous opacity,and choroidal atrophy.Her serum cortisol level was high,consistent with Cushing syndrome.Due to consanguineous marriage of her grandparents,boosted whole exome screening was performed to identify gene mutations.The results revealed mutations in HSPG2 and RIMS1,which may be contributing factors to her unique findings.CONCLUSION The unique findings in this patient with PFD may be related to mutations in the HSPG2 and RIMS1 genes.展开更多
Objective To investigate the effect of multidrug resistance gene 1 (mdr1) antisense oligodeoxynucleotides (ODNs) on reversing multidrug resistance in the drug resistant ovarian carcinoma cell line SKOV3/mdr1. Methods...Objective To investigate the effect of multidrug resistance gene 1 (mdr1) antisense oligodeoxynucleotides (ODNs) on reversing multidrug resistance in the drug resistant ovarian carcinoma cell line SKOV3/mdr1. Methods The ovarian carcinoma cell line SKOV3 transducted with a human multidrug resistance gene (mdr1) served as the drug resistant model (SKOV3/mdr1). The mdr1 antisense ODNs was transfected into SKOV3/mdr1 cells while mediated by lipofectamine. Reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the expression and the amount of the mdr1 mRNA in the cells. The positive rate and function of the mdr1 gene product P-glycoprotein (Pgp) in the mdr1 antisense ODNs treated SKOV3/mdr1 cells were determined by flow cytometry and rhodamine 123 efflux. Drug resistance in the SKOV3/mdr1 cell line was observed by MTT assay and cell colony culture. Results The mdr1 mRNA level was decreased to about 60% of that of β-actin after mdr1 antisense ODNs treatment. The Pgp positive rate of mdr1 antisense ODNs treated SKOV3/mdr1 cells decreased from 100% to 52.6% (P<0.01). The intracellular rhodamine 123 retention was increased from 9.1% to 33.8% (P<0.01). The chemoresistance to taxol decreased to 58% of SKOV3/mdr1 with mdr1 antisense ODN treatment. Compared with SKOV3/mdr1 cells in the control group, under a certain range of drug concentrations, the number of drug resistance colonies in mdr1 antisense ODNs treated SKOV3/mdr1 cells for taxol and doxorubicin decreased by 8.6±0.8 fold and 3.1±0.6 fold, respectively. Some non-specific functions during oligodeoxyncleotide treatment was also detected. Conclusion mdr1 expression in the SKOV1/mdr1 cell line was partially inhibited after mdr1 antisense ODNs treatment at the mRNA and protein level, increasing the chemotherapy sensitivity of this drug resistant ovarian carcinoma cell line.展开更多
OBJECTIVE: To probe insights into the reversal effect of bufalin on vincristine-acquired multidrug resistance(MDR) in human leukemia cell line K562/VCR.METHODS: Proliferative inhibition rate and the reversal index(RI)...OBJECTIVE: To probe insights into the reversal effect of bufalin on vincristine-acquired multidrug resistance(MDR) in human leukemia cell line K562/VCR.METHODS: Proliferative inhibition rate and the reversal index(RI) of bufalin were determined by Methyl thiazolyl tetrazolium assay. The uptake of Adriamycin(ADM) in K562/VCR cells, cell cycle and apoptosis rate were determined by flow cytometry(FCM). Cell morphologic changes were observed with Wright-Giemsa staining. The expression of P-glycoprotein(P-gp), multidrug-associated protein-1(MRP1), Bcl-x L and Bax protein were measured by immunocytochemistry.RESULTS: The human leukemia multidrug resistant K562/VCR cells showed no cross-resistance to bufalin. The RIs of bufalin at concentrations of 0.0002,0.001 and 0.005 μmol/L were 4.85, 6.94 and 14.77,respectively. Preincubation of 0.001 μmol/L bufalin for 2 h could increase intracellular ADM fluorescence intensity to 28.07%(P<0.05) and down-regulate MRP1 expression simultaneously, but no remarkable effect was found on P-gp protein. Cell cycle analysis indicated increased apoptosis rate and apparent decreased G2/M phase proportion after treatment with bufalin. When exposed to 0.01μmol/L bufalin, typical morphological changes of apoptosis could be observed. Down-regulation of Bcl-x L and up-regulation of Bax expression in K562/VCR cells could be detected by immunocytochemistry.CONCLUSION: Bufalin could partly reverse the MDR of K562/VCR cells, with a possible mechanism of down-regulating MRP1 expression and activating apoptosis pathway by altering Bcl-x L/Bax ratio.展开更多
Objective:To evaluate the antibacterial properties ot Allium sativum(garlic) cloves and Zingiber officinale(ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection.Methods:The clo...Objective:To evaluate the antibacterial properties ot Allium sativum(garlic) cloves and Zingiber officinale(ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection.Methods:The cloves of garlic and rhizomes of ginger were extracted with 95%(v/v) ethanol.The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens.Results:Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates.All the bacterial isolates were susceptible to crude extracts of both plants extracts.Except Enterobacter sp.and Klebsiella sp.,all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger.The highest inhibition zone was observed with garlic(19.4S mm) against Pseudomonas aeruginosa(P.aeruginosa).The minimal inhibitory concentration was as low as 67.00 μg/mL against P.aeruginosa.Conclusions:Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary.展开更多
Identification of the driver mutations in cancer has resulted in the development of a new category of molecularly targeted anti-cancer drugs. However, as was the case with conventional chemotherapies, the effectivenes...Identification of the driver mutations in cancer has resulted in the development of a new category of molecularly targeted anti-cancer drugs. However, as was the case with conventional chemotherapies, the effectiveness of these drugs is limited by the emergence of drug-resistant variants. While most cancer therapies are given in combinations that are designed to avoid drug resistance, we discuss here therapeutic approaches that take advantage of the changes in cancer cells that arise upon development of drug resistance. This approach is based on notion that drug resistance comes at a fitness cost to the cancer cell that can be exploited for therapeutic benefit. We discuss the development of sequential drug therapies in which the first therapy is not given with curative intent, but to induce a major new sensitivity that can be targeted with a second drug that selectively targets the acquired vulnerability. This concept of collateral sensitivity has hitherto not been used on a large scale in the clinic and holds great promise for future cancer therapy.展开更多
OBJECTIVE: To study whether human umbilical cord blood CD34+ cells transduced with human aldehyde dehydrogenase class-1 (ALDH-1) and multidrug resistance gene (MDR1) have increases resistance to 4-Hydroperoxycyclo-pho...OBJECTIVE: To study whether human umbilical cord blood CD34+ cells transduced with human aldehyde dehydrogenase class-1 (ALDH-1) and multidrug resistance gene (MDR1) have increases resistance to 4-Hydroperoxycyclo-phosphamide (4-HC) and P-glycoprotein effluxed drugs. METHODS: A bicistronic retroviral vector G1Na-ALDH1-IRES-MDR1 was constructed and used to transfect the packaging cell lines GP + E86 and PA317 by LipofectAMINE method, using the medium containing VCR and 4-HC agents for cloning selection and ping-ponging supernatant infection between the ecotropic producer clone and the amphotropic producer clone, we obtained high titer amphotropic PA317 producing cells with high titers up to 5.6 x 10(5) CFU/ml. Cord blood CD34+ cells were transfected repeatedly with supernatant of retrovirus containing human ALDH-1 and MDR1cDNA under the stimulation of hemopoietic growth factors. RESULTS: Bicistronic retroviral vector construction was verified by restriction endonuclease analysis. Polymerase chain reaction (PCR), reverse transcription (RT)-PCR, Southern blot, Northern blot, fluorescenceactivated cell sorting (FACS) method and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analyses showed that dual drug resistance genes have been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The transgenes recipient cells confered 4-fold stronger resistance to 4-HC and 5.5 to 7.2-fold P-glycoprotein effluxed drug than untransduced cells. CONCLUSION: The bicistronic retroviral vector-mediated transfer of two different types of drug resistance genes into human cord blood CD34+ cells and co-expression provided an experimental foundation for improving combination chemotherapy tolerance in tumor clinical trial.展开更多
文摘Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorting (MACS) system, and then liposome-mediated MDR1 gene was transferred into bone marrow CD34+ cells. Fluorescence-activated cell sorter was used to evaluate the expression and functional activity of P-glycoprotein (P-gp) encoded by MDR1 gene. It was found that the purity of bone marrow CD34+ cells was approximately (91±4.56) % and recovery rate was (72.3±2.36) % by MACS. The expression of P-gp in the transfected CD34+cells was obviously higher than that in non-transfected CD34+ cells. The amount of P-gp in non-transfected CD34+ cells was (11.2±2.2) %, but increased to (23.6±2.34) % 48 h after gene transfection (P<0.0l). The amount of P-gp was gradually decreased to the basic level one week later. The accumulation and extrusion assays showed that the overexpression of P-gp could efflux Rh-123 out of cells and there was low fluorescence within the transfected cells. The functional activity of P-gp could be inhibited by 10 μg/ml verapamil. It was suggested that the transient and highly effective expression and functional activity of P-gp could be obtained by liposome-mediated MRD1 transferring into human normal bone marrow CD34+ cells.
文摘Introduction: Access to antiretroviral treatment (ART) in resource-limited countries has increased signif-icantly but scaling up ART into rural areas is more recent and information on treatment outcome in rural areas is still very limited. We reported here virological outcome and drug resistance in ART in rural settings in Togo. Methods: HIV-1 infected adults (≥18 years) and infants were enrolled in routine medical visit at 12 on first-line ART in three HIV care centers. Epidemiological and demographic information and data on ART history were collected. Viral load (VL) was determined and genotypic drug resistance testing was performed on all samples with viral load above 1000 copies/ml. Results: 102 adult patients and 27 infants were consecutively enrolled. Virological failure was observed in 28 (21.5%) patients. For 25/28 patients, sequencing was successful and drug resistance mutations were observed in 23 (92%) of them. The global prevalence of drug resistance in the study population was thus at least 17.8% (23/129), with 7 (6.9%) patients infected with HIV strains that are resistant to two of the three first-line antiretroviral (ARVs) drugs and 9 (8.3%) to all three first-line ARVs. As expected, the observed drug resistance mutations were mainly associated with the drugs used in first line regimens, zidovudine, lamivudine and effavirenz/nevirapine but several patients accumulated high numbers of mutations and developed also cross-resistance to abacavir, didanosine or the new non-nucleoside reverse transcriptase inhibitor drugs, like etravirine and rilpivirine. Conclusion: The observations on ART treatment outcome from ART clinics in rural areas are the same as observed in previous observations in Lomé, the capital city. Although access to viral load will improve treatment outcome, better programme management and implementation of actions to improve factors as patient adherence, drugs stock-outs and lost to follow-up are also essential.
文摘Context: The Human Immunodeficiency Virus (HIV) continues to be the main public health challenge in Gabon. The latest studies highlight a high rate of virological failure and HIV drug resistance in semi-rural Gabon. In Libreville, virological failure data is sparse, data on HIV drug resistance for the former first line and new first-line regimen is lacking. Methods: Between January 28<sup>th</sup>, 2019, and January 31<sup>st</sup>, 2020, we received patient living with HIV (PLWHA) for CD4 counts, HIV-1 viral load, and/or genotyping of HIV-1 mutation drug resistance. We used the BD FACSPresto for CD4 count, the Biocentric Generic HIV viral load test for HIV-1 quantification, and the HIV-1 drug resistance mutation genotyping (ARNS protocol). Results: A total of 1129 HIV-1 patients have been enrolled for this study. The median age was 46 years old and the median of CD4 was 386 cells per cubic millimeter. The virological suppression success was observed at 62.7% of patients on the former first line regimen and 70.6% of the patient on DBR. We successfully amplified and analyzed 76 sequences and noticed the presence of the nineteen different subtypes with the predominance of the subtypes CRF02-AG (37.95%), followed by subtype A (22.3%). For HIV drug resistance analyses, 108 (65.1%) had resistance mutation to nucleoside reverse transcriptase inhibitors (NRTIs);of these, 91 (84%) present M184V/I. When looking for NNRTI mutations, 119 (71.7%) sequences had at least one mutation. Of these, 82 had K103N (68.9%), representing the main NNRTI mutations. The pattern showing the high level of resistance (HLR) in all molecules of NRTIs and NNRTIs, except for the TDF (intermediate resistance) was M41L-E44DL74I-M184-L210W-T215Y-K101P-K103N-V106I. Conclusion: This report paints a picture of a relatively female-dominated HIV-infected Gabonese population with a low level of immunity. The level of drug resistance with the former first-line regimen suggests the need to monitor the drug Dolutegravir resistance.
基金National Natural Science Foundation of Chinese,No.3988007
文摘AIM To observe the drug sensitizing effect andrelated mechanisms of fas gene transduction onhuman drug-resistant gastric cancer cellSGC7901/VCR(resistant to Vincristine).METHODS The cell cycle alteration wasobserved by FACS.The sensitivity of gastriccancer cells to apoptosis was determined by invitro apoptosis assay.The drug sensitization ofcells to several anti-tumor drugs was observedby MTT assay.Immunochemical method wasused to show expression of P-gp and Topo Ⅱ ingastric cancer cells.RESULTS Comparing to SGC7901 and pBK-SGC7901/VCR,fas-SGC7901/VCR showeddecreasing G2 cells and increasing S cells,theG2 phase fraction of pBK-SGC7901/VCR wasabout 3.0 times that of fas-SGC7901/VCR,but Sphase fraction of fas-SGC7901/VCR was about1.9 times that of pBK-SGC7901/VCR,indicatingS phase arrest of fas-SGC7901/VCR.FACS alsosuggested apoptosis of fas-SGC7901/VCR,fas-SGC7901/VCR was more sensitive to apoptosisinducing agent VM-26 than pBK-SGC7901/VCR.MTT assay showed increased sensitization offas-SGC7901/VCR to DDP,MMC and 5-FU,butsame sensitization to VCR according to pBK-SGC7901/VCR.SGC7901,pBK-SGC7901/ VCRand fas-SGC7901/VCR had positively stainedTopo Ⅱ equally.P-gp staining in pBK- SGC7901/VCR was stronger than in SG07901,but there was little staining of P-gp in fas.SGC7901/VCR.CONCLUSION fas gene transduction couldreverse the MDR of human drug-resistant gastriccancer cell SGC7901/VCR to a degree,possiblybecause of higher sensitization to apoptosis anddecreased expression of P-gp.
文摘Multiple myeloma(MM) is a cancer caused by uncontrolled proliferation of antibody-secreting plasma cells in bone marrow, which represents the second most common hematological malignancy. MM is a highly heterogeneous disease and can be classified into a spectrum of subgroups based on their molecular and cytogenetic abnormalities. In the past decade, novel therapies, especially, the first-in-class proteasome inhibitor bortezomib, have been revolutionary for the treatment of MM patients. Despite these remarkable achievements, myeloma remains incurable with a high frequency of patients suffering from a relapse, due to drug resistance. Mutation in the proteasome β5-subunit(PSMB5) was found in a bortezomib-resistant cell line generated via long-term coculture with increasing concentrations of bortezomib in 2008, but their actual implication in drug resistance in the clinic has not been reported until recently. A recent study discovered four resistance-inducing PSMB5 mutations from a relapsed MM patient receiving prolonged bortezomib treatment. Analysis of the dynamic clonal evolution revealed that two subclones existed at the onset of disease, while the other two subclones were induced. Protein structural modeling and functional assays demonstrated that all four mutations impaired the binding of bortezomib to the 20 S proteasome, conferring different degrees of resistance. The authors further demonstrated two potential approaches to overcome drug resistance by using combination therapy for targeting proteolysis machinery independent of the 20 S proteasome.
基金Supported in part by phone-Poulenc Rorer Pharmaceuticals INC
文摘INTRODUCTIONDevelopment of drug-resistance to chemotherapyand subsequent metastasis of tumor are primarilyresponsible for treatment failure and the death fromcancer. There have been many previous studies onthe relationship between expression of multidrugresistance (MDR) phenotype P-glycoprotein (P-gp)and the malignant properties of tumors, but theresults are often conflicting[1-8]. The difference intumor types or MDR phenotype induced by specificagents might account for this discrepancy. Taxotere(TXT), a member of the family of taxanes, hasantitumor activity through its effect of promotingthe polymerization of tubulin[9,10].
基金This study was supported by the grant from National Natural Science Foundation of China (No: 30170925).
文摘BACKGROUND: Multidrug resistance is a major obstacle in cancer chemotherapy. We examined whether the antisense RNA of multidrug resistance gene 1 (mdr1) could reverse multidrug resistance in the human hepatocellular carcinoma (HCC) cell line SMMC7721/ADM. METHODS: The recombinant adenoviruses pAdEasy- GFP-ASmdr1 product was produced by the adenoviral vector AdEasy system, which can express antisense RNA against the mdr1 gene. Following that, the recombinant adenovirus was transfected into the P-glycoprotein- producing multidrug resistance cell line, SMMC7721/ADM human HCC cells resistant to adriamycin (ADM) and daunorubicin (DNR). In order to investigate the reversal of multidrug resistance phenotype, we measured the expression of mdr1 mRNA by RT-PCR and the production of P-glycoprotein by flow cytometry. The sensitivities for ADM and DNR SMMC7721/ADM cells were examined by [3-(4, 5-dimethylthi-azol-2-yl)-2,5 diphenyl-terazolium bromide] (MTT) analysis. RESULTS: The low-level expression of mdr1 mRNA and P-glycoprotein production were observed in parental sensitive cells SMMC/7721 in addition to the overexpressionof mdr1 mRNA and P-glycoprotein in SMMC7721/ADM cells. The transfection of antisense-RNA into SMMC7721/ ADM cells resulted in decreases of mdr1 mRNA and P-glycoprotein, but increase of drug sensitivities. The sensitivities of transfected SMMC7721/ADM cells to ADM and DNR in IC50 reduced by 31.25% and 62.96% respectively. CONCLUSIONS: Mdr1 antisense RNA can increase the sensitivities of SMMC7721/ADM cells to anticancer drug by decreasing the expression of the mdr1 gene and inhibiting P-glycoprotein expression. This strategy may be applicable to cancer patients with P-glycoportein mediated multidrug resistance.
文摘Objective: To investigate the mechanism of resistance and reversal effect of ligustrazine and cyclosporin A in cisplatin--induced multidrug resistance ovarian cancer cell line 3Ao/cDDP. Methods: Using the corresponding dose calculated from clinical chemotherapy at 30 mg cisplatin per cycle, we established 3Ao/cDDP with 3Ao exposed at regular intervals and repeatedly to high-level concentration of cisplatin at 10 mg/ml for 24 hours each time. Expressions of LRP, MRP, P-gp, GSTp and TopoII were quantitatively detected with FCM. For drug resistance reversal, cyclosporin A and ligustrazine were administered singly or in combination at the maximal dose without cytotoxicity. Inhibition rates were determined by MTT assay. Results: 3Ao/cDDP was established after 4.5 months, with resistance factor 1.6 which was similar to clinical resistance degree. Low expression levels of MRP and P-gp were found in both 3Ao and 3Ao/cDDP (P>0.05), and LRP and GSTp expression levels in 3Ao/cDDP were significantly higher than those in 3Ao (P<0.005 and P<0.05, respectively), and TopoII in 3Ao/cDDP was significantly lower vs 3Ao (P<0.05). The inhibition rate of cDDP was 20.807±0.015%, cDDP plus ligustrazine 27.421±0.07% (P>0.05 vs cDDP), cDDP plus cyclosporin A 49.635±0.021% (P<0.01 vs cDDP), and cDDP plus ligustrazine and cyclosporin A 58.861±0.014% (P<0.01 vs cDDP). Conclusions: 3Ao/cDDP, induced by cisplatin and established by imitating the characteristics of clinical chemotherapy for epithelial ovarian cancer, was an ideal model for investigation of cisplatin resistance in vitro. Cisplatin resistance in 3Ao/cDDP could be accounted for by higher LRP, GSTp and lower TopoII expression and was not associated with MRP or P-gp. Ligustrazine had no significant reversal effect on cisplatin resistance, but cyclosporin A could reverse the resistance effectively.
基金financially supported by National Basic Research Program of China(973 Program,2015CB931802)Natural Science Foundation of China(31470968 and 81627901)。
文摘Multiple drug resistance(MDR)is a tough problem in developing hepatocellular carcinoma(HCC)therapy.Here,we developed TPGS-coated cationic liposomes with Bcl-2 siRNA corona to load doxorubicin(Dox)i.e.,Bcl-2 siRNA/Dox-TPGS-LPs,to enhance anticancer effect of Dox in HCC-MDR.TPGS i.e.,d-α-tocopheryl polyethylene glycol 1000 succinate,inhibited Pglycoprotein(P-gp)efflux pump and Bcl-2 siRNA suppressed anti-apoptotic Bcl-2 protein.The Bcl-2 siRNA loaded in the liposomal corona was observed under transmission electron microscopy.The stability and hemolysis evaluation demonstrated Bcl-2 siRNA/Dox-TPGSLPs had good biocompatibility and siRNA-corona could protect the liposomal core to avoid the attachment of fetal bovine serum.In drug-resistant cells,TPGS effectively prolonged intracellular Dox retention time and siRNA-corona did improve the internalization of Dox from liposomes.In vitro and in vivo anticancer effect of this dual-functional nanostructure was examined in HCC-MDR Bel7402/5-FU tumor model.MTT assay confirmed the IC50 value of Dox was 20–50 fold higher in Bel7402/5-FU MDR cells than that in sensitive Bel7402 cells.Bcl-2 siRNA corona successfully entered the cytosol of Bel7402/5-FU MDR cells to downregulate Bcl-2 protein levels in vitro and in vivo.Bcl-2 siRNA/Dox-TPGS-LPs showed superior to TPGS-(or siRNA-)linked Dox liposomes in cell apoptosis and cytotoxicity assay in Bel7402/5-FU MDR cells,and 7-fold greater effect than free Dox in tumor growth inhibition of Bel7402/5-FU xenograft nude mice.In conclusion,TPGS-coated cationic liposomes with Bcl-2 siRNA corona had the capacity to inhibit MDR dual-pathways and subsequently improved the anti-tumor activity of the chemotherapeutic agent co-delivered to a level that cannot be achieved by inhibiting a MDR single way.
文摘In order to investigate the relationship between the expression of cyclin A and drug resistance in adult patients with acute leukemia (AL), the mRNA expression of cyclin A, mdr1, TopⅡ α , bcl-2 was detected in 64 adult patients with AL and 20 normal controls by semi-reverse transcription polymerse chain reaction (semi-RT-PCR). It was found that the cyclin A and TopⅡ α mRNA expression levels in drug resistant group were significantly lower than in sensitive group ( P <0.01). Under the same experimental condition no cyclin A mRNA expression was detectable in all normal controls. The mdr1 and bcl-2 mRNA expression levels in resistant group were significantly higher than in sensitive group ( P <0.01). cyclin A and TopⅡ α gene expression levels were closely correlated ( r s =+0.794, P=0.000, n =64) in all AL patients, but cyclin A was not correlated with mdr1 and bcl-2 gene expression levels. In drug resistant group there was a negative correlation between the gene expression levels of cyclin A and mdr1 ( r s =-0.337, P=0.029 ). The 10 AL patients with positive lower expression of both cyclin A and TopⅡ α were all resistant to drugs. Logistic regression of Binary analysis showed the correlation between the lower expression of cyclin A and drug resistance. It was concluded that lower expression of cyclin A gene might be an unfavorable prognostic factor for patients with AL, and detection of both cyclin A and TopⅡ α gene expression would predict drug resistance in AL patients.
基金supported by the National High Technology Research and Development Program of China(2007AA02Z332,2008AA02Z126 and 2009AA02Z308)Shanghai Great Project Program Foundation(07DZ19505)
文摘When microarray gene expression data are used to predict multiple drug resistance(MDR)phenotypes for anticancer drugs,the normalization strategy and the quality of the selected signature genes are usually the main causes of inconsistency among different experiments.A stable statistical drug response prediction model is urgently required in oncology.In this study,the microarray gene expression data of multiple cancer cell lines with MDR was analyzed.For each probe-set,the expression value was defined as present/absent(1/0)and was classified into a gene set defined with protein domain organization(PDO).After employing the gene content method of phylogenetic analysis,a phylogenetic model(cell tree)for MDR phenotype prediction was built at the PDO gene set level.The results indicate that classification of cancer cell lines is predominantly affected by both the histopa-thological features and the MDR phenotype(paclitaxel and vinblastine).When applying this model to predict the MDR phenotype of independent samples,the phylogenetic model performs better than signature gene models.Although the utility of our procedure is limited due to sample heterogeneity,it still has potential application in MDR research,especially for hematological tumors or established cell lines.
基金Research Projects-Joint Fund for Applied Basic Research of Kunming Medical University,Yunnan Provincial Department of Science and Technology(No.2018FE001(-113),No.202301AY070001-098)Open project of Yunnan Clinical Medical Center(Nos.2020LCZXKF-XY02,XY06,XY16+1 种基金2022LCZXKF-XY02)Yunnan Health Training Project of High Level Talents(No.D–2018018).
文摘Multiple myeloma(MM)is a hematological tumor with high mortality and recurrence rate.Carfilzomib is a new-generation proteasome inhibitor that is used as the first-line therapy for MM.However,the development of drug resistance is a pervasive obstacle to treating MM.Therefore,elucidating the drug resistance mechanisms is conducive to the formulation of novel therapeutic therapies.To elucidate the mechanisms of carfilzomib resistance,we retrieved the GSE78069 microarray dataset containing carfilzomib-resistant LP-1 MM cells and parental MM cells.Differential gene expression analyses revealed major alterations in the major histocompatibility complex(MHC)and cell adhesion molecules.The upregulation of the tumor necrosis factor(TNF)receptor superfamily member 1A(TNFRSF1A)gene was accompanied by the downregulation of MHC genes and cell adhesion molecules.Furthermore,to investigate the roles of these genes,we established a carfilzomib-resistant cell model and observed that carfilzomib resistance induced TNFRSF1A overexpression and TNFRSF1A silencing reversed carfilzomib resistance and reactivated the expression of cell adhesion molecules.Furthermore,TNFRSF1A silencing suppressed the tumorigenesis of MM cells in immunocompetent mice,indicating that TNFRSF1A may lead to carfilzomib resistance by dampening antitumor immunity.Furthermore,our results indicated that TNFRSF1A overexpression conferred carfilzomib resistance in MM cells and suppressed the expression of MHC genes and cell adhesion molecules.The suppression of MHC genes and cell adhesion molecules may impair the interaction between immune cells and cancer cells to impair antitumor immunity.Future studies are warranted to further investigate the signaling pathway underlying the regulatory role of TNFRSF1A in MM cells.
文摘Great progress has been made in improving survival in multiple myeloma(MM)patients over the last 30 years.New drugs have been introduced and complete responses are frequently seen.However,the majority of MM patients do experience a relapse at a variable time after treatment,and ultimately the disease becomes drug-resistant following therapies.Recently,minimal residual disease(MRD)detection has been introduced in clinical trials utilizing novel therapeutic agents to measure the depth of response.MRD can be considered as a surrogate for both progression-free and overall survival.In this perspective,the persistence of a residual therapy-resistant myeloma plasma cell clone can be associated with inferior survivals.The present review gives an overview of drug resistance in MM,i.e.,mutation ofβ5 subunit of the proteasome;upregulation of pumps of efflux;heat shock protein induction for proteasome inhibitors;downregulation of CRBN expression;deregulation of IRF4 expression;mutation of CRBN,IKZF1,and IKZF3 for immunomodulatory drugs and decreased target expression;complement protein increase;sBCMA increase;and BCMA down expression for monoclonal antibodies.Multicolor flow cytometry,or next-generation flow,and next-generation sequencing are currently the techniques available to measure MRD with sensitivity at 10-5.Sustained MRD negativity is related to prolonged survival,and it is evaluated in all recent clinical trials as a surrogate of drug efficacy.
文摘Multiple myeloma(MM)is a plasma cell disorder typically characterized by abundant synthesis of clonal immunoglobulin or free light chains.Although incurable,a deeper understanding of MM pathobiology has fueled major therapeutical advances over the past two decades,significantly improving patient outcomes.Proteasome inhibitors,immunomodulatory drugs,and monoclonal antibodies are among the most effective anti-MM drugs,targeting not only the cancerous cells,but also the bone marrow microenvironment.However,de novo resistance has been reported,and acquired resistance is inevitable for most patients over time,leading to relapsed/refractory disease and poor outcomes.Sustained protein synthesis coupled with impaired/insufficient proteolytic mechanisms makes MM cells exquisitely sensitive to perturbations in protein homeostasis,offering us the opportunity to target this intrinsic vulnerability for therapeutic purposes.This review highlights the scientific rationale for the clinical use of FDA-approved and investigational agents targeting protein homeostasis in MM.
基金Supported by National Natural Science Foundation of China,No.81703017The Science and Technology Projects of Guangzhou,China,No.201804010080.
文摘BACKGROUND Polyostotic fibrous dysplasia(PFD)is an uncommon developmental bone disease in which normal bone and marrow are replaced by pseudotumoral tissue.The etiology of PFD is unclear,but it is generally thought to be caused by sporadic,post-zygotic mutations in the GNAS gene.Herein,we report the case of a young female with bone pain and lesions consistent with PFD,unique physical findings,and gene mutations.CASE SUMMARY A 27-year-old female presented with unbearable bone pain in her left foot for 4 years.Multiple bone lesions were detected by radiographic examinations,and a diagnosis of PFD was made after a biopsy of her left calcaneus with symptoms including pre-axial polydactyly on her left hand and severe ophthalmological problems such as high myopia,vitreous opacity,and choroidal atrophy.Her serum cortisol level was high,consistent with Cushing syndrome.Due to consanguineous marriage of her grandparents,boosted whole exome screening was performed to identify gene mutations.The results revealed mutations in HSPG2 and RIMS1,which may be contributing factors to her unique findings.CONCLUSION The unique findings in this patient with PFD may be related to mutations in the HSPG2 and RIMS1 genes.
文摘Objective To investigate the effect of multidrug resistance gene 1 (mdr1) antisense oligodeoxynucleotides (ODNs) on reversing multidrug resistance in the drug resistant ovarian carcinoma cell line SKOV3/mdr1. Methods The ovarian carcinoma cell line SKOV3 transducted with a human multidrug resistance gene (mdr1) served as the drug resistant model (SKOV3/mdr1). The mdr1 antisense ODNs was transfected into SKOV3/mdr1 cells while mediated by lipofectamine. Reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the expression and the amount of the mdr1 mRNA in the cells. The positive rate and function of the mdr1 gene product P-glycoprotein (Pgp) in the mdr1 antisense ODNs treated SKOV3/mdr1 cells were determined by flow cytometry and rhodamine 123 efflux. Drug resistance in the SKOV3/mdr1 cell line was observed by MTT assay and cell colony culture. Results The mdr1 mRNA level was decreased to about 60% of that of β-actin after mdr1 antisense ODNs treatment. The Pgp positive rate of mdr1 antisense ODNs treated SKOV3/mdr1 cells decreased from 100% to 52.6% (P<0.01). The intracellular rhodamine 123 retention was increased from 9.1% to 33.8% (P<0.01). The chemoresistance to taxol decreased to 58% of SKOV3/mdr1 with mdr1 antisense ODN treatment. Compared with SKOV3/mdr1 cells in the control group, under a certain range of drug concentrations, the number of drug resistance colonies in mdr1 antisense ODNs treated SKOV3/mdr1 cells for taxol and doxorubicin decreased by 8.6±0.8 fold and 3.1±0.6 fold, respectively. Some non-specific functions during oligodeoxyncleotide treatment was also detected. Conclusion mdr1 expression in the SKOV1/mdr1 cell line was partially inhibited after mdr1 antisense ODNs treatment at the mRNA and protein level, increasing the chemotherapy sensitivity of this drug resistant ovarian carcinoma cell line.
基金Shanghai Municipal Health Bureau:Traditional Chinese Medicine in Treating with Advanced Hepatocellular Carcinoma(No.ZYSNXD-CC-ZDYJ032)
文摘OBJECTIVE: To probe insights into the reversal effect of bufalin on vincristine-acquired multidrug resistance(MDR) in human leukemia cell line K562/VCR.METHODS: Proliferative inhibition rate and the reversal index(RI) of bufalin were determined by Methyl thiazolyl tetrazolium assay. The uptake of Adriamycin(ADM) in K562/VCR cells, cell cycle and apoptosis rate were determined by flow cytometry(FCM). Cell morphologic changes were observed with Wright-Giemsa staining. The expression of P-glycoprotein(P-gp), multidrug-associated protein-1(MRP1), Bcl-x L and Bax protein were measured by immunocytochemistry.RESULTS: The human leukemia multidrug resistant K562/VCR cells showed no cross-resistance to bufalin. The RIs of bufalin at concentrations of 0.0002,0.001 and 0.005 μmol/L were 4.85, 6.94 and 14.77,respectively. Preincubation of 0.001 μmol/L bufalin for 2 h could increase intracellular ADM fluorescence intensity to 28.07%(P<0.05) and down-regulate MRP1 expression simultaneously, but no remarkable effect was found on P-gp protein. Cell cycle analysis indicated increased apoptosis rate and apparent decreased G2/M phase proportion after treatment with bufalin. When exposed to 0.01μmol/L bufalin, typical morphological changes of apoptosis could be observed. Down-regulation of Bcl-x L and up-regulation of Bax expression in K562/VCR cells could be detected by immunocytochemistry.CONCLUSION: Bufalin could partly reverse the MDR of K562/VCR cells, with a possible mechanism of down-regulating MRP1 expression and activating apoptosis pathway by altering Bcl-x L/Bax ratio.
基金financrally supported by K.S.Rangasamy College of Arts and Science.Kuchipalayam,Tiruchengodr.Tamil Nadu,India(grant No.KSRCAS/PG/MB/0010 dt.10.11.2010)
文摘Objective:To evaluate the antibacterial properties ot Allium sativum(garlic) cloves and Zingiber officinale(ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection.Methods:The cloves of garlic and rhizomes of ginger were extracted with 95%(v/v) ethanol.The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens.Results:Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates.All the bacterial isolates were susceptible to crude extracts of both plants extracts.Except Enterobacter sp.and Klebsiella sp.,all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger.The highest inhibition zone was observed with garlic(19.4S mm) against Pseudomonas aeruginosa(P.aeruginosa).The minimal inhibitory concentration was as low as 67.00 μg/mL against P.aeruginosa.Conclusions:Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary.
文摘Identification of the driver mutations in cancer has resulted in the development of a new category of molecularly targeted anti-cancer drugs. However, as was the case with conventional chemotherapies, the effectiveness of these drugs is limited by the emergence of drug-resistant variants. While most cancer therapies are given in combinations that are designed to avoid drug resistance, we discuss here therapeutic approaches that take advantage of the changes in cancer cells that arise upon development of drug resistance. This approach is based on notion that drug resistance comes at a fitness cost to the cancer cell that can be exploited for therapeutic benefit. We discuss the development of sequential drug therapies in which the first therapy is not given with curative intent, but to induce a major new sensitivity that can be targeted with a second drug that selectively targets the acquired vulnerability. This concept of collateral sensitivity has hitherto not been used on a large scale in the clinic and holds great promise for future cancer therapy.
基金theNationalNaturalScienceFoundationofChina (No 39770 331)
文摘OBJECTIVE: To study whether human umbilical cord blood CD34+ cells transduced with human aldehyde dehydrogenase class-1 (ALDH-1) and multidrug resistance gene (MDR1) have increases resistance to 4-Hydroperoxycyclo-phosphamide (4-HC) and P-glycoprotein effluxed drugs. METHODS: A bicistronic retroviral vector G1Na-ALDH1-IRES-MDR1 was constructed and used to transfect the packaging cell lines GP + E86 and PA317 by LipofectAMINE method, using the medium containing VCR and 4-HC agents for cloning selection and ping-ponging supernatant infection between the ecotropic producer clone and the amphotropic producer clone, we obtained high titer amphotropic PA317 producing cells with high titers up to 5.6 x 10(5) CFU/ml. Cord blood CD34+ cells were transfected repeatedly with supernatant of retrovirus containing human ALDH-1 and MDR1cDNA under the stimulation of hemopoietic growth factors. RESULTS: Bicistronic retroviral vector construction was verified by restriction endonuclease analysis. Polymerase chain reaction (PCR), reverse transcription (RT)-PCR, Southern blot, Northern blot, fluorescenceactivated cell sorting (FACS) method and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analyses showed that dual drug resistance genes have been integrated into the genomic DNA of cord blood CD34+ cells and expressed efficiently. The transgenes recipient cells confered 4-fold stronger resistance to 4-HC and 5.5 to 7.2-fold P-glycoprotein effluxed drug than untransduced cells. CONCLUSION: The bicistronic retroviral vector-mediated transfer of two different types of drug resistance genes into human cord blood CD34+ cells and co-expression provided an experimental foundation for improving combination chemotherapy tolerance in tumor clinical trial.