期刊文献+
共找到36,241篇文章
< 1 2 250 >
每页显示 20 50 100
Global Burden of Fungal Infections and Antifungal Resistance from 1961 to 2024: Findings and Future Implications
1
作者 Steward Mudenda 《Pharmacology & Pharmacy》 2024年第4期81-112,共32页
Background: Antifungal resistance (AFR) is a global public health problem with devastating effects, especially among immunocompromised individuals. Addressing AFR requires a One Health approach including Antifungal St... Background: Antifungal resistance (AFR) is a global public health problem with devastating effects, especially among immunocompromised individuals. Addressing AFR requires a One Health approach including Antifungal Stewardship (AFS). This study aimed to comprehensively review global studies published on fungal infections and AFR and to recommend solutions to address this growing problem. Materials and Methods: This was a narrative review that was conducted using published papers on fungal infections, AFR, and AFS between January 1961 and March 2024. The literature was searched using PubMed, Google Scholar, Web of Science, and EMBASE. Results: This found that there has been an increase in fungal infections globally, especially among immunocompromised patients. Due to this increase in fungal infections, there has been a proportionate increase in the use of antifungal agents to prevent and treat fungal infections. This increased use of antifungal agents has worsened the problem of AFR contributing to increased morbidity and mortality. Globally, fungal infections have contributed to 150 million infections annually and 1.7 million deaths per year. By the year 2023, over 3.8 million people died from fungal infections. Addressing AFR remains a challenge because the treatment of antifungal-resistant infections is difficult. Finally, the treatment of fungal infections is a global challenge exacerbated by the limited number of antifungal agents to treat invasive fungal infections. Conclusion: The results of this study indicated that fungal infections and AFR are prevalent across humans, animals, agriculture, and the environment. Addressing this problem requires the provision of solutions such as improving the awareness of AFR, conducting further research on the discovery of new antifungal agents, and implementing AFS programs. If this global problem is not addressed, the morbidity and mortality associated with AFR will continue to rise in the future. 展开更多
关键词 Antifungal resistance Antifungal Stewardship Antimicrobial resistance fungal Infections Global Burden IMMUNOCOMPROMISED MYCOSIS
下载PDF
MATHEMATICAL MODELING AND BIFURCATION ANALYSIS FOR A BIOLOGICAL MECHANISM OF CANCER DRUG RESISTANCE
2
作者 包康博 梁桂珍 +1 位作者 田天海 张兴安 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1165-1188,共24页
Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory ca... Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory cancer cell populations.Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system,we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting.We analyze the local geometric properties of the equilibria of the model.Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population.Moreover,the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength.Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes. 展开更多
关键词 mathematical model drug resistance cancer heterogeneity immune system targeted therapy
下载PDF
Prox1 Suppresses Proliferation and Drug Resistance of Retinoblastoma Cells via Targeting Notch1
3
作者 Hong-li ZHANG Na LI +2 位作者 Lin DONG Hong-xia MA Mo-chi YANG 《Current Medical Science》 SCIE CAS 2024年第1期223-231,共9页
Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,h... Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,hepatocyte,pancreatic,heart,lens,retinal,and cancer cells.The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance,as well as to explore the underlying Notch1 mechanism.Methods Human RB cell lines(SO-RB50 and Y79)and a primary human retinal microvascular endothelial cell line(ACBRI-181)were used in this study.The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction(RT-qPCR)and Western blotting.Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay.Drug-resistant cell lines(SO-RB50/vincristine)were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance.We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1.Finally,a xenograft model was constructed to assess the effect of Prox1 on RB in vivo.Results Prox1 was significantly downregulated in RB cells.Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine.Notch1 was involved in Prox1’s regulatory effects.Notch1 was identified as a target gene of Prox1,which was found to be upregulated in RB cells and repressed by increased Prox1 expression.When pcDNA-Notch1 was transfected,the effect of Prox1 overexpression on RB was removed.Furthermore,by downregulating Notch1,Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo.Conclusion These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1,implying that Prox1 could be a potential therapeutic target for RB. 展开更多
关键词 Proxl NOTCH1 retinoblastoma cells PROLIFERATION drug resistance
下载PDF
Drug resistance mechanisms in cancers:Execution of prosurvival strategies
4
作者 Pavan Kumar Dhanyamraju 《Journal of Biomedical Research》 CAS CSCD 2024年第2期95-121,共27页
One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon o... One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions. 展开更多
关键词 cancer drug resistance MECHANISMS MICRORNAS treatment strategies
下载PDF
Inferring Mycobacterium Tuberculosis Drug Resistance and Transmission using Whole-genome Sequencing in a High TB-burden Setting in China
5
作者 FAN Yu Feng LIU Dong Xin +11 位作者 CHEN Yi Wang OU Xi Chao MAO Qi Zhi YANG Ting Ting WANG Xi Jiang HE Wen Cong ZHAO Bing LIU Zhen Jiang ABULIMITI Maiweilanjiang AIHEMUTI Maimaitiaili GAO Qian ZHAO Yan Lin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第2期157-169,共13页
Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of th... Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China.However,molecular epidemiological studies of Kashgar are lacking.Methods A population-based retrospective study was conducted using whole-genome sequencing(WGS)to determine the characteristics of drug resistance and the transmission patterns.Results A total of 1,668 isolates collected in 2020 were classified into lineages 2(46.0%),3(27.5%),and 4(26.5%).The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid(7.4%,124/1,668),streptomycin(6.0%,100/1,668),and rifampicin(3.3%,55/1,668).The rate of rifampicin resistance was 1.8%(23/1,290)in the new cases and 9.4%(32/340)in the previously treated cases.Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains,respectively:18.6%vs.8.7 or 9%,P<0.001.The estimated proportion of recent transmissions was 25.9%(432/1,668).Multivariate logistic analyses indicated that sex,age,occupation,lineage,and drug resistance were the risk factors for recent transmission.Despite the low rate of drug resistance,drug-resistant strains had a higher risk of recent transmission than the susceptible strains(adjusted odds ratio,1.414;95%CI,1.023–1.954;P=0.036).Among all patients with drug-resistant tuberculosis(DR-TB),78.4%(171/218)were attributed to the transmission of DR-TB strains.Conclusion Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar. 展开更多
关键词 Mycobacterium tuberculosis Whole-genome sequencing(WGS) Transmission drug resistance XINJIANG
下载PDF
Role of targeting ferroptosis as a component of combination therapy in combating drug resistance in colorectal cancer
6
作者 Xiao-Ting Xie Qiang-Hu Pang Lian-Xiang Luo 《World Journal of Clinical Oncology》 2024年第3期375-377,共3页
Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a ty... Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a type of non-apoptotic cell death,is characterized by the accumulation of iron and the oxidation of lipids.Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells.Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance.Moreover,the gut,responsible for regulating iron absorption and release,could influence CRC susceptibility through iron metabolism modulation.Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management,potentially revolutionizing treatment approaches for therapy-resistant cancers. 展开更多
关键词 Colorectal cancer Ferroptosis IMMUNOTHERAPY drug resistance CHEMOTHERAPY Nanodrug delivery systems
下载PDF
Smart drug delivery systems to overcome drug resistance in cancer immunotherapy 被引量:1
7
作者 Wenzhe Yi Dan Yan +1 位作者 Dangge Wang Yaping Li 《Cancer Biology & Medicine》 SCIE CAS CSCD 2023年第4期248-267,共20页
Cancer immunotherapy,a therapeutic approach that inhibits tumors by activating or strengthening anti-tumor immunity,is currently an important clinical strategy for cancer treatment;however,tumors can develop drug resi... Cancer immunotherapy,a therapeutic approach that inhibits tumors by activating or strengthening anti-tumor immunity,is currently an important clinical strategy for cancer treatment;however,tumors can develop drug resistance to immune surveillance,resulting in poor response rates and low therapeutic efficacy.In addition,changes in genes and signaling pathways in tumor cells prevent susceptibility to immunotherapeutic agents.Furthermore,tumors create an immunosuppressive microenvironment via immunosuppressive cells and secrete molecules that hinder immune cell and immune modulator infiltration or induce immune cell malfunction.To address these challenges,smart drug delivery systems(SDDSs)have been developed to overcome tumor cell resistance to immunomodulators,restore or boost immune cell activity,and magnify immune responses.To combat resistance to small molecules and monoclonal antibodies,SDDSs are used to co-deliver numerous therapeutic agents to tumor cells or immunosuppressive cells,thus increasing the drug concentration at the target site and improving efficacy.Herein,we discuss how SDDSs overcome drug resistance during cancer immunotherapy,with a focus on recent SDDS advances in thwarting drug resistance in immunotherapy by combining immunogenic cell death with immunotherapy and reversing the tumor immunosuppressive microenvironment.SDDSs that modulate the interferon signaling pathway and improve the efficacy of cell therapies are also presented.Finally,we discuss potential future SDDS perspectives in overcoming drug resistance in cancer immunotherapy.We believe that this review will contribute to the rational design of SDDSs and development of novel techniques to overcome immunotherapy resistance. 展开更多
关键词 Cancer immunotherapy drug resistance smart drug delivery system immunosuppressive microenvironment immune cell
下载PDF
Distribution and Drug Resistance Analysis of 2287 Strains of Pathogenic Bacteria in Children’s Blood Culture 被引量:1
8
作者 Tiefu Fang Qiang Wang +3 位作者 Wanqi Li Yanhuan Mao Peiqing Li Guangming Liu 《Advances in Microbiology》 CAS 2023年第1期24-31,共8页
Background: Bloodstream infection is a serious infectious disease. In recent years, the drug resistance of pathogenic bacteria to commonly used anti-infective drugs has been widely concerned, which also makes the trea... Background: Bloodstream infection is a serious infectious disease. In recent years, the drug resistance of pathogenic bacteria to commonly used anti-infective drugs has been widely concerned, which also makes the treatment of bloodstream infection face severe challenges. Objective: To explore the distribution characteristics of blood culture-positive pathogens and the resistance to antibacterial drugs, so as to provide clinicians with accurate laboratory evidence, so as to guide clinicians to rationally apply antibiotics, improve clinical treatment effects, and reduce the emergence of drug-resistant strains. Methods: From January 2019 to June 2022, 2287 positive blood culture specimens of patients in Guangzhou Women and Children’s Medical Center were retrospectively analyzed, and the proportion of different pathogenic bacteria, the distribution of pathogenic bacteria in different departments, and the multi-drug resistance of different pathogenic bacteria were counted. Results: Among the 2287 blood culture positive samples, 1560 strains (68.20%) of gram-positive bacteria and 727 strains (31.80%) of gram-negative bacteria were strained. The top three departments in the distribution of pathogenic bacteria were pediatric intensive care unit (600 strains), pediatric internal medicine (514 strains), and pediatric emergency comprehensive ward (400 strains). The pathogens with high detection rates were: Staphylococcus epidermidis (24.09%), Staphylococcus humans (23.74%), Escherichia coli (13.21%) and Klebsiella pneumoniae (8.71%). The pathogens with high multi-drug resistance rates were: Streptococcus pneumoniae (93%), Staphylococcus epidermidis (83.76%), Enterobacter cloacae (75.61%) and Staphylococcus humans (62.43%). Conclusion: In our hospital, gram-positive bacteria were the main pathogenic bacteria in the blood culture of children patients. The children’s intensive care unit was the department with the largest distribution of pathogenic bacteria, and the multiple drug resistance rate of Streptococcus pneumoniae was the highest. 展开更多
关键词 CHILDREN Blood Culture Pathogen drug resistance
下载PDF
Tomato LysM receptor kinase 4 mediates chitin-elicited fungal resistance in both leaves and fruit
9
作者 Yingfei Ai Qinghong Li +6 位作者 Chenying Li Ran Wang Xun Sun Songyu Chen Xin-Zhong Cai Xingjiang Qi Yan Liang 《Horticulture Research》 SCIE CSCD 2023年第6期170-181,共12页
Fungal infection is a major cause of crop and fruit losses.Recognition of chitin,a component of fungal cell walls,endows plants with enhanced fungal resistance.Here,we found that mutation of tomato LysM receptor kinas... Fungal infection is a major cause of crop and fruit losses.Recognition of chitin,a component of fungal cell walls,endows plants with enhanced fungal resistance.Here,we found that mutation of tomato LysM receptor kinase 4(SlLYK4)and chitin elicitor receptor kinase 1(SlCERK1)impaired chitin-induced immune responses in tomato leaves.Compared with the wild type,sllyk4 and slcerk1 mutant leaves were more susceptible to Botrytis cinerea(gray mold).SlLYK4 extracellular domain showed strong binding affinity to chitin,and the binding of SlLYK4 induced SlLYK4-SlCERK1 association.Remarkably,qRT–PCR analysis indicated that SlLYK4 was highly expressed in tomato fruit,andβ-GLUCURONIDASE(GUS)expression driven by the SlLYK4 promoter was observed in tomato fruit.Furthermore,SlLYK4 overexpression enhanced disease resistance not only in leaves but also in fruit.Our study suggests that chitin-mediated immunity plays a role in fruit,providing a possible way to reduce fungal infection-related fruit losses by enhancing the chitin-induced immune responses. 展开更多
关键词 LEAVES resistance fungal
下载PDF
Meta-QTL analysis for mining of candidate genes and constitutive gene network development for fungal disease resistance in maize(Zea mays L.)
10
作者 Mamta Gupta Mukesh Choudhary +3 位作者 Alla Singh Seema Sheoran Deepak Singla Sujay Rakshit 《The Crop Journal》 SCIE CSCD 2023年第2期511-522,共12页
The development of resistant maize cultivars is the most effective and sustainable approach to combat fungal diseases.Over the last three decades,many quantitative trait loci(QTL)mapping studies reported numerous QTL ... The development of resistant maize cultivars is the most effective and sustainable approach to combat fungal diseases.Over the last three decades,many quantitative trait loci(QTL)mapping studies reported numerous QTL for fungal disease resistance(FDR)in maize.However,different genetic backgrounds of germplasm and differing QTL analysis algorithms limit the use of identified QTL for comparative studies.The meta-QTL(MQTL)analysis is the meta-analysis of multiple QTL experiments,which entails broader allelic coverage and helps in the combined analysis of diverse QTL mapping studies revealing common genomic regions for target traits.In the present study,128(33.59%)out of 381 reported QTL(from 82 studies)for FDR could be projected on the maize genome through MQTL analysis.It revealed 38 MQTL for FDR(12 diseases)on all chromosomes except chromosome 10.Five MQTL namely 1_4,2_4,3_2,3_4,and 5_4 were linked with multiple FDR.Total of 1910 candidate genes were identified for all the MQTL regions,with protein kinase gene families,TFs,pathogenesis-related,and disease-responsive proteins directly or indirectly associated with FDR.The comparison of physical positions of marker-traits association(MTAs)from genome-wide association studies with genes underlying MQTL interval verified the presence of QTL/candidate genes for particular diseases.The linked markers to MQTL and putative candidate genes underlying identified MQTL can be further validated in the germplasm through marker screening and expression studies.The study also attempted to unravel the underlying mechanism for FDR resistance by analyzing the constitutive gene network,which will be a useful resource to understand the molecular mechanism of defense-response of a particular disease and multiple FDR in maize. 展开更多
关键词 Meta-QTL Maize genome fungal disease resistance Candidate gene Constitutive genes Gene network
下载PDF
HIV-1 Subtype Diversity and Factors Affecting Drug Resistance among Patients with Virologic Failure in Antiretroviral Therapy in Hainan Province,China,2014–2020
11
作者 YU De E XU Yu Jun +13 位作者 LI Mu YANG Yuan LIANG Hua Yue ZHONG Shan Mei QIN Cai LAN Ya Nan LI Da Wei YU Ji Peng PANG Yuan QIN Xue Qiu LIANG Hao ZHU Kao Kao YE Li LIANG Bing Yu 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2023年第9期800-813,共14页
Objective This study aimed to determine the HIV-1 subtype distribution and HIV drug resistance(HIVDR)in patients with ART failure from 2014 to 2020 in Hainan,China.Methods A 7-year cross-sectional study was conducted ... Objective This study aimed to determine the HIV-1 subtype distribution and HIV drug resistance(HIVDR)in patients with ART failure from 2014 to 2020 in Hainan,China.Methods A 7-year cross-sectional study was conducted among HIV/AIDS patients with ART failure in Hainan.We used online subtyping tools and the maximum likelihood phylogenetic tree to confirm the HIV subtypes with pol sequences.Drug resistance mutations(DRMs)were analyzed using the Stanford University HIV Drug Resistance Database.Results A total of 307 HIV-infected patients with ART failure were included,and 241 available pol sequences were obtained.Among 241 patients,CRF01_AE accounted for 68.88%,followed by CRF07_BC(17.00%)and eight other subtypes(14.12%).The overall prevalence of HIVDR was 61.41%,and the HIVDR against non-nucleoside reverse transcriptase inhibitors(NNRTIs),nucleotide reverse transcriptase inhibitors(NRTIs),and protease inhibitors(PIs)were 59.75%,45.64%,and 2.49%,respectively.Unemployed patients,hypoimmunity or opportunistic infections in individuals,and samples from 2017 to 2020 increased the odd ratios of HIVDR.Also,HIVDR was less likely to affect female patients.The common DRMs to NNRTIs were K103N(21.99%)and Y181C(20.33%),and M184V(28.21%)and K65R(19.09%)were the main DRMs against NRTIs.Conclusion The present study highlights the HIV-1 subtype diversity in Hainan and the importance of HIVDR surveillance over a long period. 展开更多
关键词 HIV-1 subtypes Antiretroviral therapy Virological failure drug resistance
下载PDF
KCNJ15 deficiency promotes drug resistance via affecting the function of lysosomes
12
作者 Xinbo Qiao Yixiao Zhang +10 位作者 Zhan Zhang Nan Niu Haonan Li Lisha Sun Qingtian Ma Jiawen Bu Jinchi Liu Guanglei Chen Jinqi Xue Yongliang Yang Caigang Liu 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第3期132-145,共14页
The altered lysosomal function can induce drug redistribution which leads to drug resistance and poor prognosis for cancer patients.V-ATPase,an ATP-driven proton pump positioned at lysosomal surfaces,is responsible fo... The altered lysosomal function can induce drug redistribution which leads to drug resistance and poor prognosis for cancer patients.V-ATPase,an ATP-driven proton pump positioned at lysosomal surfaces,is responsible for maintaining the stability of lysosome.Herein,we reported that the potassium voltage-gated channel subfamily J member 15(KCNJ15)protein,which may bind to V-ATPase,can regulate the function of lysosome.The deficiency of KCNJ15 protein in breast cancer cells led to drug aggregation as well as reduction of drug efficacy.The application of the V-ATPase inhibitor could inhibit the binding between KCNJ15 and V-ATPase,contributing to the amelioration of drug resistance.Clinical data analysis revealed that KCNJ15 deficiency was associated with higher histological grading,advanced stages,more metastases of lymph nodes,and shorter disease free survival of patients with breast cancer.KCNJ15 expression level is positively correlated with a high response rate after receiving neoadjuvant chemotherapy.Moreover,we revealed that the small molecule drug CMA/BAF can reverse drug resistance by disrupting the interaction between KCNJ15 and lysosomes.In conclusion,KCNJ15 could be identified as an underlying indicator for drug resistance and survival of breast cancer,which might guide the choice of therapeutic strategies. 展开更多
关键词 Breast cancer Cancer progression drug resistance LYSOSOME KCNJ15
下载PDF
A Pleiotropic Drug Resistance Family Protein Gene Is Required for Rice Growth, Seed Development and Zinc Homeostasis
13
作者 LI Chao LI He +1 位作者 ZHANG Xianduo YANG Zhimin 《Rice science》 SCIE CSCD 2023年第2期127-137,I0035-I0038,共15页
Zinc(Zn) is an essential mineral element for plant growth and development. Zn deficiency in crops frequently occurs in many types of soils. It is therefore crucial to identify genetic resources linking Zn acquisition ... Zinc(Zn) is an essential mineral element for plant growth and development. Zn deficiency in crops frequently occurs in many types of soils. It is therefore crucial to identify genetic resources linking Zn acquisition traits and development of crops with improved Zn-use efficiency for sustainable crop production. In this study, we functionally identified a rice uncharacterized ABCG(ATP-binding cassette G-subfamily) gene encoding a PDR20(pleiotropic drug resistance 20) metal transporter for mediation of rice growth, seed development and Zn accumulation. OsPDR20 was localized to the plasma membrane, but it was not transcriptionally induced under Zn deficiency, rather was sufficiently up-regulated under high level of Zn stress. Yeast(Saccharomyces cerevisiae) transformed with OsPDR20 displayed a relatively lower Zn accumulation with attenuated cellular growth, suggesting that OsPDR20 had an activity for Zn transport. Knocking-down OsPDR20 by RNA interference(RNAi) compromised rice growth with shorter plant height and decreased biomass in rice plantlets grown under hydroponic media. Zn concentration in the roots of OsPDR20 knocked-down rice lines declined under Zn deficiency, while they remained unchanged compared with the wild type under normal Zn supply. A rice lifelong field trial demonstrated that OsPDR20 mutation impaired the capacity of seed development, with shortened panicle and seed length, compromised spikelet fertility, and reduced grain number per plant or grain weight per unit area. Interestingly, OsPDR20 mutation elevated the accumulation of Zn in husk and brown rice over the wild type. Overall, this study pointed out that OsPDR20 is fundamentally required for rice growth and seed development through Zn transport and homeostasis. 展开更多
关键词 OsPDR20 zinc transport RICE seed development ABCG53 pleiotropic drug resistance
下载PDF
Roles of lncRNAs in pancreatic ductal adenocarcinoma: Diagnosis,treatment, and the development of drug resistance
14
作者 Xiao-Yin Jiang Qi-Cong Zhu +5 位作者 Xiao-Jian Zhang Ting Duan Jiao Feng Xin-Bing Sui Xue-Ni Sun Yi-Ping Mou 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2023年第2期128-139,共12页
Background: Pancreatic ductal adenocarcinoma(PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accum... Background: Pancreatic ductal adenocarcinoma(PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accumulating evidence suggests that long non-coding RNAs(lnc RNAs) are intimately involved in the treatment resistance of pancreatic cancer cells via interacting with critical signaling pathways and may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. Data sources: We carried out a systematic review on lnc RNAs-based research in the context of pancreatic cancer and presented an overview of the updated information regarding the molecular mechanisms underlying lnc RNAs-modulated pancreatic cancer progression and drug resistance, together with their potential value in diagnosis, prognosis, and treatment of PDAC. Literature mining was performed in Pub Med with the following keywords: long non-coding RNA, pancreatic ductal adenocarcinoma, pancreatic cancer up to January 2022. Publications relevant to the roles of lnc RNAs in diagnosis, prognosis, drug resistance, and therapy of PDAC were collected and systematically reviewed. Results: Lnc RNAs, such as HOTAIR, HOTTIP, and PVT1, play essential roles in regulating pancreatic cancer cell proliferation, invasion, migration, and drug resistance, thus may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. They participate in tumorigenesis mainly by targeting mi RNAs, interacting with signaling molecules, and involving in the epithelial-mesenchymal transition process. Conclusions: The functional lnc RNAs play essential roles in pancreatic cancer cell proliferation, invasion, migration, and drug resistance and have potential values in diagnosis, prognostic prediction, and treatment of PDAC. 展开更多
关键词 Long non-coding RNA Pancreatic ductal adenocarcinoma drug resistance Diagnostic indicator Therapeutic targets Molecular mechanism
下载PDF
Advances in drug resistance of triple negative breast cancer caused by pregnane X receptor
15
作者 Zhou-Zhou Rao Zhong-Wen Tang Jie Wen 《World Journal of Clinical Oncology》 2023年第9期335-342,共8页
Breast cancer is the most common malignancy in women worldwide.Triplenegative breast cancer(TNBC),refers breast cancer negative for estrogen receptor,progesterone receptor and human epidermal growth factor receptor 2,... Breast cancer is the most common malignancy in women worldwide.Triplenegative breast cancer(TNBC),refers breast cancer negative for estrogen receptor,progesterone receptor and human epidermal growth factor receptor 2,characterized by high drug resistance,high metastasis and high recurrence,treatment of which is a difficult problem in the clinical treatment of breast cancer.In order to better treat TNBC clinically,it is a very urgent task to explore the mechanism of TNBC resistance in basic breast cancer research.Pregnane X receptor(PXR)is a nuclear receptor whose main biological function is to participate in the metabolism,transport and clearance of allobiological agents in PXR.PXR plays an important role in drug metabolism and clearance,and PXR is highly expressed in tumor tissues of TNBC patients,which is related to the prognosis of breast cancer patients.This reviews synthesized the important role of PXR in the process of high drug resistance to TNBC chemotherapeutic drugs and related research progress. 展开更多
关键词 Triple-negative breast cancer Pregnane X receptor drug resistance Cytochrome P450 Uridinediphosphate glucuronyl transferases Glutathione transferases ATP-binding cassette transporter
下载PDF
Clinical Distribution and Drug Resistance of Acinetobacter baumannii in a Hospital from 2019 to 2021
16
作者 Wei Liu Yiminghui Long +1 位作者 Yu Liu Xu Zhou 《Journal of Clinical and Nursing Research》 2023年第3期124-129,共6页
Objective:To analyze the clinical distribution and drug resistance of Acinetobacter baumannii(AB)and provide reference for the treatment of AB infection.Methods:AB isolated from clinical specimens of Huaihua First Peo... Objective:To analyze the clinical distribution and drug resistance of Acinetobacter baumannii(AB)and provide reference for the treatment of AB infection.Methods:AB isolated from clinical specimens of Huaihua First People’s Hospital from 2019 to 2021 were collected and identified by VITEK 2 Compact,an automated microbial identification and susceptibility testing system,in which drug sensitivity test was also performed.Excel was used for statistical analysis.Results:Among the 1,311 AB strains,81.16%(1,064 strains)were from sputum samples,and the departments with the highest detections rates of AB were neurosurgery(24.33%),intensive care(15.48%)and infectious disease(11.44%).The drug sensitivity test showed that the resistance rate of 1,311 AB strains to compound sulfamethoxazole and amikacin was 28.38%and 20.54%,respectively,and the resistance rate to 10 other kinds of common antibiotics was more than 40%.Conclusion:The 1,311 AB strains isolated were widely distributed in clinical settings and had strong resistance to commonly used antibiotics.Therefore,it is necessary to strengthen the monitoring of pathogens and drug resistance,formulate reasonable and effective infection control measures,and ensure that antibiotics are used in a reasonable manner. 展开更多
关键词 Acinetobacter baumannii drug resistance drug sensitivity test
下载PDF
Relationship between Methylation Status of Multi-drug Resistance Protein(MRP) and Multi-drug Resistance in Lung Cancer Cell Lines 被引量:3
17
作者 柳瑞军 钟竑 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2007年第4期277-282,共6页
Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell... Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell line WI-38, lung adenocarcinoma cell line SPCA-1 and its drug-resistant cells induced by different concentrations of doxorubicin were treated with restriction endonuclease Eco47III. The methylation status of MRP was examined by PCR, and the expressions of its mRNA and protein were evaluated by in situ hybridization and immunohistochemistry. Results: MRP gene promoter region of WI-38 cells was in hypermethylation status, but the promoter region of MRP in SPCA-1 cells and their resistant derivatives induced by different concentrations of doxorubicin were in hypomethylation status. There were significant differences in the expression of MRP mRNA among WI-38 cell line, SPCA-1 cells and their drug-resistant derivatives induced by different concentration of doxorubicin. Consistently, MRP immunostaining presented similar significant differences. Conclusion: The promoter region of MRP in SPCA-1 lung adenocarcinoma cells was in hypomethylation status. The hypomethylation status of 5' regulatory region of MRP promoter is an important structural basis that can increase the activity of transcription and results in the development of drug resistance in lung cancer. 展开更多
关键词 Lung cancer Multi-drug resistance protein(MRP) METHYLATION Multi-drug resistance(MDR)
下载PDF
New strategies against drug resistance to herpes simplex virus 被引量:15
18
作者 Yu-Chen Jiang Hui Feng +1 位作者 Yu-Chun Lin Xiu-Rong Guo 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第1期1-6,共6页
Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleos... Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV. 展开更多
关键词 new strategies drug resistance herpes simplex virus Janus-type nucleoside analogues lethal mutagenesis
下载PDF
The crosstalk between autophagy and ferroptosis:what can we learn to target drug resistance in cancer? 被引量:9
19
作者 Yulu Zhou Yong Shen +4 位作者 Cong Chen Xinbing Sui Jingjing Yang Linbo Wang Jichun Zhou 《Cancer Biology & Medicine》 SCIE CAS CSCD 2019年第4期630-646,共17页
Autophagy is a conserved intracellular degradation system that plays a dual role in cell death;thus,therapies targeting autophagy in cancer are somewhat controversial.Ferroptosis is a new form of regulated cell death ... Autophagy is a conserved intracellular degradation system that plays a dual role in cell death;thus,therapies targeting autophagy in cancer are somewhat controversial.Ferroptosis is a new form of regulated cell death featured with the iron-dependent accumulation of lethal lipid ROS.This pathway is morphologically,biochemically and genetically distinct from other forms of cell death.Accumulating studies have revealed crosstalk between autophagy and ferroptosis at the molecular level.In this review,we summarize the mechanisms of ferroptosis and autophagy,and more importantly,their roles in the drug resistance of cancer.Numerous connections between ferroptosis and autophagy have been revealed,and a strong causal relationship exists wherein one process controls the other and can be utilized as potential therapeutic targets for cancer.The elucidation of when and how to modulate their crosstalk using therapeutic strategies depends on an understanding of the fine-tuned switch between ferroptosis and autophagy,and approaches designed to manipulate the intensity of autophagy might be the key. 展开更多
关键词 AUTOPHAGY ferroptosis CROSSTALK CANCER drug resistance
下载PDF
An Integrated QTL Map of Fungal Disease Resistance in Soybean (Glycine max L. Merr):A Method of Meta-Analysis for Mining R Genes 被引量:5
20
作者 WANG Jia-lin LIU Chun-yan +4 位作者 WANG Jing QI Zhao-ming LI Hui HU Guo-hua CHEN Qing-shan 《Agricultural Sciences in China》 CAS CSCD 2010年第2期223-232,共10页
Diseases caused by fungal pathogens account for approximately 50% of all soybean disease losses around the world. Conflicting results of fungal disease resistance QTLs from different populations often occurred. The ob... Diseases caused by fungal pathogens account for approximately 50% of all soybean disease losses around the world. Conflicting results of fungal disease resistance QTLs from different populations often occurred. The objectives of this study were to: (i) evaluate evidence for reported fungal disease resistance QTLs associations in soybean and (ii) extract relatively reliable and useful information from the "real" QTLs and mine putative genes in soybean. An integrated map of fungal disease resistance QTLs in soybean was established with soymap 2 published in 2004 as a reference map. QTLs of fungal disease resistance developed from each of separate populations in recent 10 years were integrated into a combinative map for gene cloning and marker assisted selection in soybean. 107 QTLs from different maps were integrated and projected to the reference map with the software BioMercator 2.1. A method of meta-analysis was used to narrow down the confidence interval, and 23 "real" QTLs and their corresponding markers were obtained from 12 linkage groups (LG), respectively. Two published R genes were found in these "real" QTLs intervals. Sequences in the "real" QTLs intervals were predicted by GENSCAN, and these predicted genes were annotated in Goblet. 228 resistance gene analogs (RGAs) in 12 different terms were mined. The results will lay the foundation for a bioinformatics platform combining abundant QTLs, and offer the basis for marker assisted selection and gene cloning in soybean. 展开更多
关键词 SOYBEAN fungal disease QTL META-ANALYSIS resistance gene analogs
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部