Objective:To identify the prognosis of hepatocellular carcinoma(HCC)and the effect of anti-cancer drug therapy by screening glutamine metabolism-related signature genes because glutamine metabolism plays an important ...Objective:To identify the prognosis of hepatocellular carcinoma(HCC)and the effect of anti-cancer drug therapy by screening glutamine metabolism-related signature genes because glutamine metabolism plays an important role in tumor development.Methods:We obtained gene expression samples of normal liver tissue and hepatocellular carcinoma from the TCGA database and GEO database,screened for differentially expressed glutamine metabolismrelated genes(GMRGs),constructed a prognostic model by lasso regression and step cox analysis,and assessed the differences in drug sensitivity between high-and low-risk groups.Results:We screened 23 differentially expressed GMRGs by differential analysis,and correlation loop plots and PPI protein interaction networks indicated that these differential genes were strongly correlated.The four most characterized genes(CAD,PPAT,PYCR3,and SLC7A11)were obtained by lasso regression and step cox,and a risk model was constructed and confirmed to have reliable predictive power in the TCGA dataset and GEO dataset.Finally,immunotherapy is better in the high-risk group than in the low-risk group,and chemotherapy and targeted drug therapy are better in the low-risk group than in the high-risk group.Conclusion:In conclusion,we have developed a reliable prognostic risk model characterized by glutamine metabolism-related genes,which may provide a viable basis for the prognosis and Treatment options of HCC patients.展开更多
Combinatorial therapies have been recently proposed to improve the efficacy of anticancer treatment. The Synergy Finder R package is a software used to analyze pre-clinical drug combination datasets. Here, we report t...Combinatorial therapies have been recently proposed to improve the efficacy of anticancer treatment. The Synergy Finder R package is a software used to analyze pre-clinical drug combination datasets. Here, we report the major updates to the Synergy Finder R package for improved interpretation and annotation of drug combination screening results. Unlike the existing implementations, the updated Synergy Finder R package includes five main innovations. 1) We extend the mathematical models to higher-order drug combination data analysis and implement dimension reduction techniques for visualizing the synergy landscape. 2) We provide a statistical analysis of drug combination synergy and sensitivity with confidence intervals and P values. 3)We incorporate a synergy barometer to harmonize multiple synergy scoring methods to provide a consensus metric for synergy. 4) We evaluate drug combination synergy and sensitivity to provide an unbiased interpretation of the clinical potential. 5) We enable fast annotation of drugs and cell lines, including their chemical and target information. These annotations will improve the interpretation of the mechanisms of action of drug combinations. To facilitate the use of the R package within the drug discovery community, we also provide a web server at www.s ynergyfinderplus.org as a user-friendly interface to enable a more fexible and versatile analysis of drug combination data.展开更多
基金Key Project of Natural Science Research in Anhui Universities (No.KJ2021A0774)National Student Innovation and Entrepreneurship Training Program Grant (No.202110367037)。
文摘Objective:To identify the prognosis of hepatocellular carcinoma(HCC)and the effect of anti-cancer drug therapy by screening glutamine metabolism-related signature genes because glutamine metabolism plays an important role in tumor development.Methods:We obtained gene expression samples of normal liver tissue and hepatocellular carcinoma from the TCGA database and GEO database,screened for differentially expressed glutamine metabolismrelated genes(GMRGs),constructed a prognostic model by lasso regression and step cox analysis,and assessed the differences in drug sensitivity between high-and low-risk groups.Results:We screened 23 differentially expressed GMRGs by differential analysis,and correlation loop plots and PPI protein interaction networks indicated that these differential genes were strongly correlated.The four most characterized genes(CAD,PPAT,PYCR3,and SLC7A11)were obtained by lasso regression and step cox,and a risk model was constructed and confirmed to have reliable predictive power in the TCGA dataset and GEO dataset.Finally,immunotherapy is better in the high-risk group than in the low-risk group,and chemotherapy and targeted drug therapy are better in the low-risk group than in the high-risk group.Conclusion:In conclusion,we have developed a reliable prognostic risk model characterized by glutamine metabolism-related genes,which may provide a viable basis for the prognosis and Treatment options of HCC patients.
基金supported by the European Research Council(ERC) starting grant DrugComb (informatics approaches for the rational selection of personalized cancer drug combinations)(Grant No.716063)the European Commission H2020EOSC-life (providing an open collaborative space for digital biology in Europe)(Grant No.824087)+6 种基金the Academy of Finland grant (Grant No.317680)the Sigrid Juselius Foundation grantfunded by the University of Helsinki through theDoctoral Program of Biomedicine (DPBM)personal grants from K.Albin Johanssons Stiftelse and Biomedicum Helsinki Foundationpersonal grant from K.Albin Johanssons Stiftelsefunded by the University of Helsinki through the Doctoral Program of Integrative Life Science (ILS)personal grant from the Cancer Foundation Finland
文摘Combinatorial therapies have been recently proposed to improve the efficacy of anticancer treatment. The Synergy Finder R package is a software used to analyze pre-clinical drug combination datasets. Here, we report the major updates to the Synergy Finder R package for improved interpretation and annotation of drug combination screening results. Unlike the existing implementations, the updated Synergy Finder R package includes five main innovations. 1) We extend the mathematical models to higher-order drug combination data analysis and implement dimension reduction techniques for visualizing the synergy landscape. 2) We provide a statistical analysis of drug combination synergy and sensitivity with confidence intervals and P values. 3)We incorporate a synergy barometer to harmonize multiple synergy scoring methods to provide a consensus metric for synergy. 4) We evaluate drug combination synergy and sensitivity to provide an unbiased interpretation of the clinical potential. 5) We enable fast annotation of drugs and cell lines, including their chemical and target information. These annotations will improve the interpretation of the mechanisms of action of drug combinations. To facilitate the use of the R package within the drug discovery community, we also provide a web server at www.s ynergyfinderplus.org as a user-friendly interface to enable a more fexible and versatile analysis of drug combination data.