Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms i...Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety.展开更多
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target no...Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.展开更多
Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological bi...Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological biomarkers for acute spinal cord injury,few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy.This study involved 30 patients with degenerative cervical myelopathy(51.3±7.3 years old,12 women and 18 men),seven healthy controls(25.7±1.7 years old,one woman and six men),and nine patients with cervical spondylotic radiculopathy(51.9±8.6 years old,three women and six men).Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics.Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities.Using least absolute shrinkage and selection operator analysis,we constructed a five-gene model(TBCD,TPM2,PNKD,EIF4G2,and AP5Z1)to diagnose degenerative cervical myelopathy with an accuracy of 93.5%.One-gene models(TCAP and SDHA)identified mild and severe degenerative cervical myelopathy with accuracies of 83.3%and 76.7%,respectively.Signatures of two immune cell types(memory B cells and memory-activated CD4^(+)T cells)predicted levels of lesions in degenerative cervical myelopathy with 80%accuracy.Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.展开更多
Objective: To investigate the characteristics of katG and inhA gene mutations in multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (preXDR-TB), and their correlation with resistanc...Objective: To investigate the characteristics of katG and inhA gene mutations in multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (preXDR-TB), and their correlation with resistance to protionamide (Pto). Methods: A total of 229 patients with MDR-TB and pre-XDR-TB diagnosed in the Eighth Affiliated Hospital of Xinjiang Medical University from January 2020 to February 2024 were selected to analyze the characteristics of katG and inhA mutations in MTB clinical isolates and their correlation with Pto resistance. Results: The mutation rate of katG (with or without inhA mutation) was 85.2%. The mutation rates in MDR-TB and pre-XDR-TB were 87.4% (125/143) and 81.4% (70/86), respectively. The mutation rate of inhA (including katG mutation) was 14.8% (34/229), which was 12.6% (18/143) and 18.6% (16/86) in MDR-TB and pre-XDR-MTB, respectively. There was no difference in mutation (P > 0.05). Conclusion: The total resistance rate to Pto in 229 strains was 8.7% (20/229), which was 8.4% (12/143) and 9.3% (8/86) in MDR-TB and pre-XDR-TB, respectively. Among the inhA mutant strains, 13 were resistant to the Pto phenotype, and the resistance rate was 65% (13/20). In MDR-TB and pre-XDR-TB strains resistant to Pto, inhA gene mutations occurred in 66.7% (6/9) and 63.6% (7/11), respectively. The resistance rates of MDR-MTB and pre-XDR-TB strains without inhA gene mutation to Pto were 2.4% (3/125) and 5.7% (4/70), respectively.展开更多
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular...Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.展开更多
A critical unaddressed problem in Parkinson’s disease is the lack of therapy that slows or hampers neurodegeneration.While medications effectively manage symptoms,they offer no long-term benefit because they fail to ...A critical unaddressed problem in Parkinson’s disease is the lack of therapy that slows or hampers neurodegeneration.While medications effectively manage symptoms,they offer no long-term benefit because they fail to address the underlying neuronal loss.This highlights that the elusive goals of halting progression and restoring damaged neurons limit the long-term impact of current approaches.Recent clinical trials using gene therapy have demonstrated the safety of various vector delivery systems,dosages,and transgenes expressed in the central nervous system,signifying tangible and substantial progress in applying gene therapy as a promising Parkinson’s disease treatment.Intriguingly,at diagnosis,many dopamine neurons remain in the substantia nigra,offering a potential window for recovery and survival.We propose that modulating these surviving dopamine neurons and axons in the substantia nigra and striatum using gene therapy offers a potentially more impactful therapeutic approach for future research.Moreover,innovative gene therapies that focus on preserving the remaining elements may have significant potential for enhancing long-term outcomes and the quality of life for patients with Parkinson’s disease.In this review,we provide a perspective on how gene therapy can protect vulnerable elements in the substantia nigra and striatum,offering a novel approach to addressing Parkinson’s disease at its core.展开更多
Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-asso...Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.展开更多
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio...Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.展开更多
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept...BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.展开更多
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulat...Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.展开更多
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
Objective:To investigate the influence of GST-π gene transfer on drug-resistance of human cord blood CD34 + cells.Methods:CD34 + cells were purified from cord blood from normal full-term pregnancy.Gene transduction i...Objective:To investigate the influence of GST-π gene transfer on drug-resistance of human cord blood CD34 + cells.Methods:CD34 + cells were purified from cord blood from normal full-term pregnancy.Gene transduction into human cord blood CD34 + cells was carried out using GST-π gene containing retrovirus vector.The GST-π gene expression in transduced CD34 + cell was confirmed by RT-PCR.After confirmation of GST-π gene transfer,the transfected CD34 + cells were cultured by colony assay in the presence of carboplatin.Results:GST-π mRNA was detected in 30% of CFU-GM derived from GST-π gene transduced CD34 + cells.In vitro drug resistance test showed that the number of CFU-GM formed was significantly higher (2~3 fold) in GST-π gene transduced CD34 + cells than untransduced CD34 +cells.Conclusion:GST-π gene transfer can confer resistance to hematopoietic progenitors against carboplatin in vitro.展开更多
The virulent factors of Escherichia coil (E.cofi) play an important role in the process of pathopoiesis. The study aimed to compare drug-resistant genes and virulence genes between extended spectrum β-1actamases (...The virulent factors of Escherichia coil (E.cofi) play an important role in the process of pathopoiesis. The study aimed to compare drug-resistant genes and virulence genes between extended spectrum β-1actamases (ESBLs)-producing E.coli and non-ESBLs-producing E.cofi to provide a reference for physicians in management of hospital infection. From October 2010 to August 2011,96 drug-resistant strains of E. coli isolated were collected from the specimens in Qingdao Municipal Hospital, Qingdao, China. These bacteria strains were divided into a ESBLs-producing group and a non-ESBLs-producing group. Drug sensitivity tests were performed using the Kirby-Bauer (K-B) method. Disinfectant gene, qacEAl-sull and 8 virulence genes (CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1) were tested by polymerase chain reaction (PCR). Among the 96 E.coli isolates, the ESBLs-producing E.coli comprised 46 (47.9%) strains and the non-ESBLs-producing E.cofi consisted of 50 (52.1%) strains. The detection rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA,VT1, est, bfpA, elt, and CNF1 in 46 ESBLs-producing E.coli isolates were 89.1%, 76.1%, 6.5%, 69.6%, 69.6%, 89.1%, 10.9%, 26.1%, 8.7%, and 19.6%, respectively. In the non-ESBLs-producing E.cofi strains, the positive rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1 were 62.0%, 80.0%, 16.0%, 28.0%, 64.0%, 38.0%, 6.0%, 34.0%, 10.0%, and 24.0%, respectively. The difference in the detection rates of multiple drug-resistant strain, hlyA and VT1 between the ESBLs-producing E.cofi strains and the non-ESBLs-producing E.cofi strains was statistically significant (P〈0.05). The positive rate of multiple drug-resistant strains is higher in the ESBLs-producing strains than in the non-ESBLs-producing strains. The expression of some virulence genes hlyA and VT1 varies between the ESBLs-producing strains and the non-ESBLs-producing strains. Increased awareness of clinicians and enhanced testing by laboratories are required to reduce treatment failures and prevent the spread of multiple drug-resistant strains.展开更多
Objective: To assess the effect of curcumin on CDDP-induced drug resistance and explore the underlying molecular mechanism through Nrf2 system and autophagy pathway.Methods: A drug-resistant cell model was established...Objective: To assess the effect of curcumin on CDDP-induced drug resistance and explore the underlying molecular mechanism through Nrf2 system and autophagy pathway.Methods: A drug-resistant cell model was established by exposing A549/CDDP cell to2 μg/mL CDDP. A549/CDDP cell was treated with 20 μg/mL CDDP and 10 μM curcumin. The cell viability and apoptosis level, the signals of Keap1/P62-Nrf2 and autophagy pathway were analyzed.Results: CDDP induction promoted drug-resistant phenotype in A549/CDDP cell and activated autophagy as well as Nrf2 signals in A549/CDDP cell. Meanwhile, curcumin combination attenuated autophagy and Nrf2 activation induced by CDDP, and reversed the drug-resistant phenotype. Notably, curcumin combination augmented Keap1 transcription. Furthermore, Keap1 ablation with short hairpin RNAs hampered the efficacy of curcumin, suggesting Keap1 played a crucial role on reversal effect of curcumin.Conclusions: The present findings demonstrate that CDDP promotes abnormal activation of Nrf2 pathway and autophagy, leading to drug resistance of A549/CDDP cell.Curcumin attenuates this process and combat drug-resistance through its potent activation on Keap1 transcription, which is essential for interplay between oxidative stress induced Nrf2 activation and autophagy/apoptosis switch.展开更多
To understand the genetic diversity and drug resistance status of Mycobocterium tuberculosis (M. tuberculosis) circulating in Xuzhou of China, the spacer-oligonucleotide typing (Spoligotyping) and multi-loci VNTRs...To understand the genetic diversity and drug resistance status of Mycobocterium tuberculosis (M. tuberculosis) circulating in Xuzhou of China, the spacer-oligonucleotide typing (Spoligotyping) and multi-loci VNTRs (variable number tandem repeats) analysis (MLVA) were utilized for the genotyping of the isolates. Drug susceptibility test (DST) was performed by the proportion method on the Lowenstein-Jensen (L-J) medium using isoniazid, rifampicin, ethambutol, and streptomycin. By Spoligotyping, 287 M. tuberculosis isolates were differentiated into 14 clusters. Then with 15-1oci MLVA, these strains could be divided into 32 clusters, 228 genotypes. Of 15 VNTRs, 6 loci had the highly discriminatory powers, 6 loci presented moderate discrimination and 3 loci demonstrated less polymorphism. The DST results showed that 46 strains were resistant to at least one first-line anti-tuberculosis agent. There was a difference in the isoniazid resistance between Beijing and non-Beijing genotype strains. We concluded that the combination of Spoligotyping and 15 VNTR loci as the genotyping in our study was applicable for this region, the drug resistant isolates were identified, and the Beijing family was the most prevalent genotype in the rural counties of Xuzhou.展开更多
Objective:Squamous cell carcinoma(SCC)represents the most common histotype of all head and neck malignancies and includes oropharyngeal squamous cell carcinoma(OSCC),a tumor associated with different clinical outcomes...Objective:Squamous cell carcinoma(SCC)represents the most common histotype of all head and neck malignancies and includes oropharyngeal squamous cell carcinoma(OSCC),a tumor associated with different clinical outcomes and linked to human papilloma virus(HPV)status.Translational research has few available in vitro models with which to study the different pathophysiological behavior of OSCCs.The present study proposes a 3-dimensional(3 D)biomimetic collagen-based scaffold to mimic the tumor microenvironment and the crosstalk between the extracellular matrix(ECM)and cancer cells.Methods:We compared the phenotypic and genetic features of HPV-positive and HPV-negative OSCC cell lines cultured on common monolayer supports and on scaffolds.We also explored cancer cell adaptation to the 3 D microenvironment and its impact on the efficacy of drugs tested on cell lines and primary cultures.Results:HPV-positive and HPV-negative cell lines were successfully grown in the 3 D model and displayed different collagen fiber organization.The 3 D cultures induced an increased expression of markers related to epithelial–mesenchymal transition(EMT)and to matrix interactions and showed different migration behavior,as confirmed by zebrafish embryo xenografts.The expression of hypoxia-inducible factor 1α(1α)and glycolysis markers were indicative of the development of a hypoxic microenvironment inside the scaffold area.Furthermore,the 3 D cultures activated drug-resistance signaling pathways in both cell lines and primary cultures.Conclusions:Our results suggest that collagen-based scaffolds could be a suitable model for the reproduction of the pathophysiological features of OSCCs.Moreover,3 D architecture appears capable of inducing drug-resistance processes that can be studied to better our understanding of the different clinical outcomes of HPV-positive and HPV-negative patients with OSCCs.展开更多
It is unclear whether immune escape-associated mutations in the major hydrophilic region of hepatitis B virus surface antigen(HBsAg)are associated with nucleoside/nucleotide analog resistance.AIM To evaluate the assoc...It is unclear whether immune escape-associated mutations in the major hydrophilic region of hepatitis B virus surface antigen(HBsAg)are associated with nucleoside/nucleotide analog resistance.AIM To evaluate the association between immune escape-associated mutations and nucleoside/nucleotide analog resistance mutations.METHODS In total,19440 patients with chronic hepatitis B virus infection,who underwent resistance testing at the Fifth Medical Center of Chinese PLA General Hospital between July 2007 and December 2017,were enrolled.As determined by sequence analysis,6982 patients harbored a virus with resistance mutations and 12458 harbored a virus lacking resistance mutations.Phenotypic analyses were performed to evaluate HBsAg production,replication capacity,and drug-induced viral inhibition of patient-derived drug-resistant mutants with or without the coexistence of sA159V.RESULTS The rate of immune escape-associated mutation was significantly higher in 9 of the 39 analyzed mutation sites in patients with resistance mutations than in patients without resistance mutations.In particular,these mutations were sQ101H/K/R,sS114A/L/T,sT118A/K/M/R/S/V,sP120A/L/Q/S/T,sT/I126A/N/P/S,sM133I/L/T,sC137W/Y,sG145A/R,and sA159G/V.Among these,sA159V was detected in 1.95%(136/6982)of patients with resistance mutations and 1.08%(134/12,458)of patients lacking resistance mutations(P<0.05).The coexistence of sA159V with lamivudine(LAM)and entecavir(ETV)-resistance mutations in the same viral genome was identified during follow-up in some patients with drug resistance.HBsAg production was significantly lower and the replication capacity was significantly higher,without a significant difference in LAM/ETV susceptibility,in sA159V-containing LAM/ETV-resistant mutants than in their sA159V-lacking counterparts.CONCLUSION In summary,we observed a close link between the increase in certain immune escape-associated mutations and the development of resistance mutations.sA159V might increase the fitness of LAM/ETV-resistant mutants under environmental pressure in some cases.展开更多
Listeria monocytogenes is the pathogen of listeriosis and it causes severe infections like septicemia, encephalitis, and meningitis, especially in immunocompromised individuals, newborns, and pregnant women. Its wide ...Listeria monocytogenes is the pathogen of listeriosis and it causes severe infections like septicemia, encephalitis, and meningitis, especially in immunocompromised individuals, newborns, and pregnant women. Its wide distribution in the environment and ability to survive or even grow under adverse conditions has made L. monocytogenes an important public health concern and in food industry.展开更多
The aim of this study is to investigate epigenetic mechanism of ABCG2 induced drug-resistance. It is not only expatiate for drug-resistance regulation mechanism in all-round, but also to provide scientific experimenta...The aim of this study is to investigate epigenetic mechanism of ABCG2 induced drug-resistance. It is not only expatiate for drug-resistance regulation mechanism in all-round, but also to provide scientific experimental basis for selecting target to reverse its drug-resistance. Apply methylation-specific PCR (MSP) to have tested methylation of ABCG2 promoter region -359 to -353 specific positions in breast cancer tissues and paired adjacent tissue of 22 cases and test their methylation positions with MSP products for sequencing; and adopt fluorescent quantitation RT-PCR to test expression level DNMT1, DNMT3A, DNMT3B and ABCG2; to make analysis on relationship between them with statistical spearman correlation. Specific positions of ABCG2 gene promoter region of 18 cases among the 22 cases with breast cancer (18/22, 82%) existed high methylation (P〈0.05), MSP products sequencing proved methylation of the specific position, and mRNA expression level was relative higher in remarkable positive correlation (P〈0.05) ABCG2, DNMT1, DNMT3A, DNMT3B mRNA expression levels in breast cancer tissues were obviously higher than adjacent tissues (P〈0.01), and DNMT3B expression level was obviously higher than DNMT1 and DNMT3A (P〈0.01) in negative correlation with ABCG2 gene expression (P=0.001). -359 to -353 positions of promoter regions of ABCG2gene existed high methylation capable to push expression of this gene in beast cancer tissue. DNMT3B is involved in expression regulation in ABCG2 gene, and provides new scientific basis for drug-resistance target as reverse ABCG2 induction展开更多
Objective: To study the effect of adenovirus- mediated transfer of anti-MDR1 ribozyme on the reversal of multidrug resistant (MDR) phenotype of P-glycoprotein (P-gp)-positive Daudi human Burkitt lymphoma both in vitro...Objective: To study the effect of adenovirus- mediated transfer of anti-MDR1 ribozyme on the reversal of multidrug resistant (MDR) phenotype of P-glycoprotein (P-gp)-positive Daudi human Burkitt lymphoma both in vitro and in vivo. Methods: A recombinant adenovirus expressing 196Rz (Adv-196Rz) was developed and functionally evaluated. SCID mice inoculated subcutaneously (s.c.) with 5?06 Daudi/MDR20 cells were locally treated with Adv-196Rz or mock virus (Adv-Mock) at the multiplicity of infection (MOI) of 400 PFU once a day for 3 consecutive days. Then the mice were intraperitoneally (i.p.) administrated with vincristine (VCR) 450ng/g for 5 consecutive days. Results: In vitro employment of Adv-196Rz was able to interrupt MDR1 transcription, to inhibit P-gp expression and to restore drug sensitivity to VCR of Daudi/MDR20 cells. In vivo, 87.5% (7/8) of Daudi/MDR20-inoculated mice treated with Adv-Mock+ VCR developed palpable tumor by the 6th week and died or were sacrificed (because of tumor weight > 10% of body weight) by the 11th week. In contrast, among 9 Daudi/MDR20-inoculated mice treated with Adv-196Rz + VCR, only 3 developed tumor by the 11th, 13th and 14th week, respectively. 66.7% of mice survived >120 days in tumor-free. The survival difference between the two groups was very significant (P<0.01). Conclusion: Adenovirus- mediated Transfer of 196Rz can revert drug resistance of MDR tumor cells both in vitro and in vivo. Adv-196Rz may prove useful as an adjuvant in the chemotherapy of P-gp mediated MDR human tumors.展开更多
基金supported by the National Natural Science Foundation of China(32172188)Science and Technology Cooperation Project of ZheJiang Province(2023SNJF058-3)。
文摘Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety.
基金supported by the National Natural Science Foundation of China,Nos. 81760247, 82171450the Scientific Research Foundation for Doctors of the Affiliated Hospital of Zunyi Medical University,No.(2016)14 (all to HH)。
文摘Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.
基金supported by Hunan Provincial Key Research and Development Program,No.2021SK2002(to BW)the Natural Science Foundation of Hunan Province of China(General Program),No.2021JJ30938(to YL)。
文摘Degenerative cervical myelopathy is a common cause of spinal cord injury,with longer symptom duration and higher myelopathy severity indicating a worse prognosis.While numerous studies have investigated serological biomarkers for acute spinal cord injury,few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy.This study involved 30 patients with degenerative cervical myelopathy(51.3±7.3 years old,12 women and 18 men),seven healthy controls(25.7±1.7 years old,one woman and six men),and nine patients with cervical spondylotic radiculopathy(51.9±8.6 years old,three women and six men).Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics.Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities.Using least absolute shrinkage and selection operator analysis,we constructed a five-gene model(TBCD,TPM2,PNKD,EIF4G2,and AP5Z1)to diagnose degenerative cervical myelopathy with an accuracy of 93.5%.One-gene models(TCAP and SDHA)identified mild and severe degenerative cervical myelopathy with accuracies of 83.3%and 76.7%,respectively.Signatures of two immune cell types(memory B cells and memory-activated CD4^(+)T cells)predicted levels of lesions in degenerative cervical myelopathy with 80%accuracy.Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.
基金Study on the Correlation Between inhA Gene Mutation of Multidrug-Resistant MTB and Resistance to Protionamide (Project number: 2022013)。
文摘Objective: To investigate the characteristics of katG and inhA gene mutations in multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (preXDR-TB), and their correlation with resistance to protionamide (Pto). Methods: A total of 229 patients with MDR-TB and pre-XDR-TB diagnosed in the Eighth Affiliated Hospital of Xinjiang Medical University from January 2020 to February 2024 were selected to analyze the characteristics of katG and inhA mutations in MTB clinical isolates and their correlation with Pto resistance. Results: The mutation rate of katG (with or without inhA mutation) was 85.2%. The mutation rates in MDR-TB and pre-XDR-TB were 87.4% (125/143) and 81.4% (70/86), respectively. The mutation rate of inhA (including katG mutation) was 14.8% (34/229), which was 12.6% (18/143) and 18.6% (16/86) in MDR-TB and pre-XDR-MTB, respectively. There was no difference in mutation (P > 0.05). Conclusion: The total resistance rate to Pto in 229 strains was 8.7% (20/229), which was 8.4% (12/143) and 9.3% (8/86) in MDR-TB and pre-XDR-TB, respectively. Among the inhA mutant strains, 13 were resistant to the Pto phenotype, and the resistance rate was 65% (13/20). In MDR-TB and pre-XDR-TB strains resistant to Pto, inhA gene mutations occurred in 66.7% (6/9) and 63.6% (7/11), respectively. The resistance rates of MDR-MTB and pre-XDR-TB strains without inhA gene mutation to Pto were 2.4% (3/125) and 5.7% (4/70), respectively.
基金supported by the National Natural Science Foundation of China,No.82101340(to FJ).
文摘Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.
基金supported by the National Research Foundation of Korea(RS-2023-00245298)the Korea Healthcare Technology R&D(HI21C1795)grants,funded by the Korean government(to SRK).
文摘A critical unaddressed problem in Parkinson’s disease is the lack of therapy that slows or hampers neurodegeneration.While medications effectively manage symptoms,they offer no long-term benefit because they fail to address the underlying neuronal loss.This highlights that the elusive goals of halting progression and restoring damaged neurons limit the long-term impact of current approaches.Recent clinical trials using gene therapy have demonstrated the safety of various vector delivery systems,dosages,and transgenes expressed in the central nervous system,signifying tangible and substantial progress in applying gene therapy as a promising Parkinson’s disease treatment.Intriguingly,at diagnosis,many dopamine neurons remain in the substantia nigra,offering a potential window for recovery and survival.We propose that modulating these surviving dopamine neurons and axons in the substantia nigra and striatum using gene therapy offers a potentially more impactful therapeutic approach for future research.Moreover,innovative gene therapies that focus on preserving the remaining elements may have significant potential for enhancing long-term outcomes and the quality of life for patients with Parkinson’s disease.In this review,we provide a perspective on how gene therapy can protect vulnerable elements in the substantia nigra and striatum,offering a novel approach to addressing Parkinson’s disease at its core.
基金supported by the National Natural Science Foundation of China,Nos.82071008(to BL)and 82004001(to XJ)Medical Science and Technology Program of Health Commission of Henan Province,No.LHGJ20210072(to RQ)Science and Technology Department of Henan Province,No.212102310307(to XJ)。
文摘Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
基金supported by a grant from the Progressive MS Alliance(BRAVE in MS)Le Grand Portage Fund。
文摘Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
基金Supported by Grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.RS-2022-KH129889.
文摘BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
基金supported by the National Natural Science Foundation of China,Nos.82271411(to RG),51803072(to WLiu)grants from the Department of Finance of Jilin Province,Nos.2022SCZ25(to RG),2022SCZ10(to WLiu),2021SCZ07(to RG)+2 种基金Jilin Provincial Science and Technology Program,No.YDZJ202201ZYTS038(to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University,No.2022qnpy11(to WLuo)The Project of China-Japan Union Hospital of Jilin University,No.XHQMX20233(to RG)。
文摘Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms.Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration.However,recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration,particularly in the context of traumatic injuries.Consequently,autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration.Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths,thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation.These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration.A range of autophagyinducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries.This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration,summarizing the potential drugs and interventions that can be harnessed to promote this process.We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
文摘Objective:To investigate the influence of GST-π gene transfer on drug-resistance of human cord blood CD34 + cells.Methods:CD34 + cells were purified from cord blood from normal full-term pregnancy.Gene transduction into human cord blood CD34 + cells was carried out using GST-π gene containing retrovirus vector.The GST-π gene expression in transduced CD34 + cell was confirmed by RT-PCR.After confirmation of GST-π gene transfer,the transfected CD34 + cells were cultured by colony assay in the presence of carboplatin.Results:GST-π mRNA was detected in 30% of CFU-GM derived from GST-π gene transduced CD34 + cells.In vitro drug resistance test showed that the number of CFU-GM formed was significantly higher (2~3 fold) in GST-π gene transduced CD34 + cells than untransduced CD34 +cells.Conclusion:GST-π gene transfer can confer resistance to hematopoietic progenitors against carboplatin in vitro.
文摘The virulent factors of Escherichia coil (E.cofi) play an important role in the process of pathopoiesis. The study aimed to compare drug-resistant genes and virulence genes between extended spectrum β-1actamases (ESBLs)-producing E.coli and non-ESBLs-producing E.cofi to provide a reference for physicians in management of hospital infection. From October 2010 to August 2011,96 drug-resistant strains of E. coli isolated were collected from the specimens in Qingdao Municipal Hospital, Qingdao, China. These bacteria strains were divided into a ESBLs-producing group and a non-ESBLs-producing group. Drug sensitivity tests were performed using the Kirby-Bauer (K-B) method. Disinfectant gene, qacEAl-sull and 8 virulence genes (CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1) were tested by polymerase chain reaction (PCR). Among the 96 E.coli isolates, the ESBLs-producing E.coli comprised 46 (47.9%) strains and the non-ESBLs-producing E.cofi consisted of 50 (52.1%) strains. The detection rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA,VT1, est, bfpA, elt, and CNF1 in 46 ESBLs-producing E.coli isolates were 89.1%, 76.1%, 6.5%, 69.6%, 69.6%, 89.1%, 10.9%, 26.1%, 8.7%, and 19.6%, respectively. In the non-ESBLs-producing E.cofi strains, the positive rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1 were 62.0%, 80.0%, 16.0%, 28.0%, 64.0%, 38.0%, 6.0%, 34.0%, 10.0%, and 24.0%, respectively. The difference in the detection rates of multiple drug-resistant strain, hlyA and VT1 between the ESBLs-producing E.cofi strains and the non-ESBLs-producing E.cofi strains was statistically significant (P〈0.05). The positive rate of multiple drug-resistant strains is higher in the ESBLs-producing strains than in the non-ESBLs-producing strains. The expression of some virulence genes hlyA and VT1 varies between the ESBLs-producing strains and the non-ESBLs-producing strains. Increased awareness of clinicians and enhanced testing by laboratories are required to reduce treatment failures and prevent the spread of multiple drug-resistant strains.
基金supported by the National Natural Science Foundation of China(81272485,81503236,81641141)the Natural Science Foundation of Anhui Province,China(1608085QH212)+1 种基金the Key Scientific Research Foundation of the Higher Education Institutions of Anhui Province(KJ2015A155)Key Projects of Anhui Province University Outstanding Youth Talent Supporting Program(gxyqZD2016178,gxyqZD2016179)
文摘Objective: To assess the effect of curcumin on CDDP-induced drug resistance and explore the underlying molecular mechanism through Nrf2 system and autophagy pathway.Methods: A drug-resistant cell model was established by exposing A549/CDDP cell to2 μg/mL CDDP. A549/CDDP cell was treated with 20 μg/mL CDDP and 10 μM curcumin. The cell viability and apoptosis level, the signals of Keap1/P62-Nrf2 and autophagy pathway were analyzed.Results: CDDP induction promoted drug-resistant phenotype in A549/CDDP cell and activated autophagy as well as Nrf2 signals in A549/CDDP cell. Meanwhile, curcumin combination attenuated autophagy and Nrf2 activation induced by CDDP, and reversed the drug-resistant phenotype. Notably, curcumin combination augmented Keap1 transcription. Furthermore, Keap1 ablation with short hairpin RNAs hampered the efficacy of curcumin, suggesting Keap1 played a crucial role on reversal effect of curcumin.Conclusions: The present findings demonstrate that CDDP promotes abnormal activation of Nrf2 pathway and autophagy, leading to drug resistance of A549/CDDP cell.Curcumin attenuates this process and combat drug-resistance through its potent activation on Keap1 transcription, which is essential for interplay between oxidative stress induced Nrf2 activation and autophagy/apoptosis switch.
基金funded by the projects 2013ZX10003002-001 of Chinese National Key Program of Mega Infectious Disease of the National 12th Five-Year Planthe Science and Technology Innovation Team Support project CX201412 of Changzhi Medical College
文摘To understand the genetic diversity and drug resistance status of Mycobocterium tuberculosis (M. tuberculosis) circulating in Xuzhou of China, the spacer-oligonucleotide typing (Spoligotyping) and multi-loci VNTRs (variable number tandem repeats) analysis (MLVA) were utilized for the genotyping of the isolates. Drug susceptibility test (DST) was performed by the proportion method on the Lowenstein-Jensen (L-J) medium using isoniazid, rifampicin, ethambutol, and streptomycin. By Spoligotyping, 287 M. tuberculosis isolates were differentiated into 14 clusters. Then with 15-1oci MLVA, these strains could be divided into 32 clusters, 228 genotypes. Of 15 VNTRs, 6 loci had the highly discriminatory powers, 6 loci presented moderate discrimination and 3 loci demonstrated less polymorphism. The DST results showed that 46 strains were resistant to at least one first-line anti-tuberculosis agent. There was a difference in the isoniazid resistance between Beijing and non-Beijing genotype strains. We concluded that the combination of Spoligotyping and 15 VNTR loci as the genotyping in our study was applicable for this region, the drug resistant isolates were identified, and the Beijing family was the most prevalent genotype in the rural counties of Xuzhou.
文摘Objective:Squamous cell carcinoma(SCC)represents the most common histotype of all head and neck malignancies and includes oropharyngeal squamous cell carcinoma(OSCC),a tumor associated with different clinical outcomes and linked to human papilloma virus(HPV)status.Translational research has few available in vitro models with which to study the different pathophysiological behavior of OSCCs.The present study proposes a 3-dimensional(3 D)biomimetic collagen-based scaffold to mimic the tumor microenvironment and the crosstalk between the extracellular matrix(ECM)and cancer cells.Methods:We compared the phenotypic and genetic features of HPV-positive and HPV-negative OSCC cell lines cultured on common monolayer supports and on scaffolds.We also explored cancer cell adaptation to the 3 D microenvironment and its impact on the efficacy of drugs tested on cell lines and primary cultures.Results:HPV-positive and HPV-negative cell lines were successfully grown in the 3 D model and displayed different collagen fiber organization.The 3 D cultures induced an increased expression of markers related to epithelial–mesenchymal transition(EMT)and to matrix interactions and showed different migration behavior,as confirmed by zebrafish embryo xenografts.The expression of hypoxia-inducible factor 1α(1α)and glycolysis markers were indicative of the development of a hypoxic microenvironment inside the scaffold area.Furthermore,the 3 D cultures activated drug-resistance signaling pathways in both cell lines and primary cultures.Conclusions:Our results suggest that collagen-based scaffolds could be a suitable model for the reproduction of the pathophysiological features of OSCCs.Moreover,3 D architecture appears capable of inducing drug-resistance processes that can be studied to better our understanding of the different clinical outcomes of HPV-positive and HPV-negative patients with OSCCs.
基金the National Natural Science Foundation of China,No.81572010,No.81671399,No.81721002 and No.81971329the Capital Health Research and Development of Special Fund Program,No.2016-2-5032and the Beijing Natural Science Foundation No.7172206.
文摘It is unclear whether immune escape-associated mutations in the major hydrophilic region of hepatitis B virus surface antigen(HBsAg)are associated with nucleoside/nucleotide analog resistance.AIM To evaluate the association between immune escape-associated mutations and nucleoside/nucleotide analog resistance mutations.METHODS In total,19440 patients with chronic hepatitis B virus infection,who underwent resistance testing at the Fifth Medical Center of Chinese PLA General Hospital between July 2007 and December 2017,were enrolled.As determined by sequence analysis,6982 patients harbored a virus with resistance mutations and 12458 harbored a virus lacking resistance mutations.Phenotypic analyses were performed to evaluate HBsAg production,replication capacity,and drug-induced viral inhibition of patient-derived drug-resistant mutants with or without the coexistence of sA159V.RESULTS The rate of immune escape-associated mutation was significantly higher in 9 of the 39 analyzed mutation sites in patients with resistance mutations than in patients without resistance mutations.In particular,these mutations were sQ101H/K/R,sS114A/L/T,sT118A/K/M/R/S/V,sP120A/L/Q/S/T,sT/I126A/N/P/S,sM133I/L/T,sC137W/Y,sG145A/R,and sA159G/V.Among these,sA159V was detected in 1.95%(136/6982)of patients with resistance mutations and 1.08%(134/12,458)of patients lacking resistance mutations(P<0.05).The coexistence of sA159V with lamivudine(LAM)and entecavir(ETV)-resistance mutations in the same viral genome was identified during follow-up in some patients with drug resistance.HBsAg production was significantly lower and the replication capacity was significantly higher,without a significant difference in LAM/ETV susceptibility,in sA159V-containing LAM/ETV-resistant mutants than in their sA159V-lacking counterparts.CONCLUSION In summary,we observed a close link between the increase in certain immune escape-associated mutations and the development of resistance mutations.sA159V might increase the fitness of LAM/ETV-resistant mutants under environmental pressure in some cases.
文摘Listeria monocytogenes is the pathogen of listeriosis and it causes severe infections like septicemia, encephalitis, and meningitis, especially in immunocompromised individuals, newborns, and pregnant women. Its wide distribution in the environment and ability to survive or even grow under adverse conditions has made L. monocytogenes an important public health concern and in food industry.
基金Supported by the National Natural Science Foundation of China (30500599 and 30571592)the Natural Science Foundation of Guangdong (9151503102000019)the Medical Scientific Research Foundation of Guangdong (A2009606)
文摘The aim of this study is to investigate epigenetic mechanism of ABCG2 induced drug-resistance. It is not only expatiate for drug-resistance regulation mechanism in all-round, but also to provide scientific experimental basis for selecting target to reverse its drug-resistance. Apply methylation-specific PCR (MSP) to have tested methylation of ABCG2 promoter region -359 to -353 specific positions in breast cancer tissues and paired adjacent tissue of 22 cases and test their methylation positions with MSP products for sequencing; and adopt fluorescent quantitation RT-PCR to test expression level DNMT1, DNMT3A, DNMT3B and ABCG2; to make analysis on relationship between them with statistical spearman correlation. Specific positions of ABCG2 gene promoter region of 18 cases among the 22 cases with breast cancer (18/22, 82%) existed high methylation (P〈0.05), MSP products sequencing proved methylation of the specific position, and mRNA expression level was relative higher in remarkable positive correlation (P〈0.05) ABCG2, DNMT1, DNMT3A, DNMT3B mRNA expression levels in breast cancer tissues were obviously higher than adjacent tissues (P〈0.01), and DNMT3B expression level was obviously higher than DNMT1 and DNMT3A (P〈0.01) in negative correlation with ABCG2 gene expression (P=0.001). -359 to -353 positions of promoter regions of ABCG2gene existed high methylation capable to push expression of this gene in beast cancer tissue. DNMT3B is involved in expression regulation in ABCG2 gene, and provides new scientific basis for drug-resistance target as reverse ABCG2 induction
基金This work was supported in part by theNational Natural Science Foundation of China (No. 39970831).
文摘Objective: To study the effect of adenovirus- mediated transfer of anti-MDR1 ribozyme on the reversal of multidrug resistant (MDR) phenotype of P-glycoprotein (P-gp)-positive Daudi human Burkitt lymphoma both in vitro and in vivo. Methods: A recombinant adenovirus expressing 196Rz (Adv-196Rz) was developed and functionally evaluated. SCID mice inoculated subcutaneously (s.c.) with 5?06 Daudi/MDR20 cells were locally treated with Adv-196Rz or mock virus (Adv-Mock) at the multiplicity of infection (MOI) of 400 PFU once a day for 3 consecutive days. Then the mice were intraperitoneally (i.p.) administrated with vincristine (VCR) 450ng/g for 5 consecutive days. Results: In vitro employment of Adv-196Rz was able to interrupt MDR1 transcription, to inhibit P-gp expression and to restore drug sensitivity to VCR of Daudi/MDR20 cells. In vivo, 87.5% (7/8) of Daudi/MDR20-inoculated mice treated with Adv-Mock+ VCR developed palpable tumor by the 6th week and died or were sacrificed (because of tumor weight > 10% of body weight) by the 11th week. In contrast, among 9 Daudi/MDR20-inoculated mice treated with Adv-196Rz + VCR, only 3 developed tumor by the 11th, 13th and 14th week, respectively. 66.7% of mice survived >120 days in tumor-free. The survival difference between the two groups was very significant (P<0.01). Conclusion: Adenovirus- mediated Transfer of 196Rz can revert drug resistance of MDR tumor cells both in vitro and in vivo. Adv-196Rz may prove useful as an adjuvant in the chemotherapy of P-gp mediated MDR human tumors.