General features of rainy season with excess or deficits are analyzed using standardized precipitation index (SPI) in Limay and Neuquen River basins. Results indicate that most of dry and wet periods persist less than...General features of rainy season with excess or deficits are analyzed using standardized precipitation index (SPI) in Limay and Neuquen River basins. Results indicate that most of dry and wet periods persist less than three months in both basins. Furthermore, an increase of rainfall variability over time is observed in the Limay river basin but it is not detected in the Neuquen river basin. There is a tendency for wet (dry) periods to take place in El Ni?o (La Ni?a) years in both basins. Rainfall in both basins, have an important annual cycle with its maximum in winter. In addition, possible causes of extreme rainy seasons over the Limay River Basin are detailed. The main result is that the behavior of low level precipitation systems displacing over the Pacific Ocean in April influences the general hydric situation during the whole rainy season. In order to establish the existence of previous circulation patterns associated with interannual SPI variability, the composite fields of wet and dry years are compared. The result is that rainfall is related to El Ni?o- Southern Oscillation (ENSO) phenomenon and circulation over the Pacific Ocean. The prediction scheme, using multiple linear regressions, showed that 46% of the SPI variance can be explained by this model. The scheme was validated by using a cross-validation method, and significant correlations are detected between observed and forecast SPI. A polynomial model is used and it little improved the linear one, explaining the 49% of the SPI variance. The analysis shows that circulation indicators are useful to predict winter rainfall behavior.展开更多
At the global scale,atmospheric inputs of nitrogen are an important source of the new nitrogen that supports new marine production,especially in oligotrophic open oceans and marginal seas.This study reports quantities...At the global scale,atmospheric inputs of nitrogen are an important source of the new nitrogen that supports new marine production,especially in oligotrophic open oceans and marginal seas.This study reports quantities of atmospheric deposition of dissolved inorganic nitrogen(DIN)to the largest marginal sea in the North Pacific(the oligotrophic South China Sea,SCS)based primarily on rainwater sampling in the open northwestern region(Yongxing Island)from 2013 to 2015,and aerosol sampling from the SCS basin in June 2017.Atmospheric wet and dry deposition of DIN and their potential contributions to productivity were estimated.The volume-weighted mean rainwater concentrations during the wet and dry seasons were 4.9 and 18.1μmol L-1 for N+N(NO3-+NO2-),and 5.7 and 4.0μmol L-1 for NH4+,respectively.Rainwater concentrations of DIN were lower in the marginal seas than in the open ocean.The aerosol NO3-concentration was 1.15±1.18μg m-3 during the wet season,which is slightly lower than reported for the East China Sea and East Sea,but higher than in the Arabian Sea.Monthly wet and dry deposition rates ranged from 0.4-3.9 and 0.4-1.2 mmol m-2 mon-1 for NO3-,and 0.2-1.3 and 0.01-0.02 mmol m-2 mon-1 for NH4+,respectively.The annual wet and dry deposition fluxes of DIN were estimated to be 16.8 and 10.1 mmol m-2yr-1,respectively.Compared to other marginal seas,the SCS receives less atmospheric NO3-inputs than the Yellow Sea,East China Sea,East Sea,and northeastern Mediterranean Sea.The total atmospheric DIN deposition may account for 1.8-11.1%of the nitrogen supporting new production and 0.7-1.8%of the nitrogen supporting primary production.展开更多
Based on site-observation data,NCEP–NCAR reanalysis data,and Climatic Research Unit gridded data,the rainfall variability over Tanzania during late austral summer(January–March,JFM)was analyzed for the period 1961–...Based on site-observation data,NCEP–NCAR reanalysis data,and Climatic Research Unit gridded data,the rainfall variability over Tanzania during late austral summer(January–March,JFM)was analyzed for the period 1961–2011.Further,the associated atmospheric circulation and SST anomalies(SSTAs)were explored to understand the mechanisms of dry-and wet-year cases based on an interannual time scale.The correlation,Morlet wavelet power spectrum,and composite analysis methods were employed.The results showed that the JFM standardized rainfall anomaly time series exhibited significant time scales of variability at interannual(2–8 years)and quasidecadal(8–12 years).During dry years,anomalous anticyclonic northeasterly flow originating from western tropical Indian and southeast trades from the Indian Ocean to the southeast were associated with subsiding dry air,which resulted in suppression of rainfall as observed.In the typical wet-year cases,meanwhile,anomalous westerlies from the tropical and southeast Atlantic were strengthened over the Congo basin,delivering more precipitation to the region.Significant correlation was exhibited over the western tropical and southeast Indian Ocean,as well as the southeast and tropical Atlantic Ocean.These SSTA patterns favored atmospheric general circulation anomalies that were closely related to JFM rainfall over Tanzania.展开更多
文摘General features of rainy season with excess or deficits are analyzed using standardized precipitation index (SPI) in Limay and Neuquen River basins. Results indicate that most of dry and wet periods persist less than three months in both basins. Furthermore, an increase of rainfall variability over time is observed in the Limay river basin but it is not detected in the Neuquen river basin. There is a tendency for wet (dry) periods to take place in El Ni?o (La Ni?a) years in both basins. Rainfall in both basins, have an important annual cycle with its maximum in winter. In addition, possible causes of extreme rainy seasons over the Limay River Basin are detailed. The main result is that the behavior of low level precipitation systems displacing over the Pacific Ocean in April influences the general hydric situation during the whole rainy season. In order to establish the existence of previous circulation patterns associated with interannual SPI variability, the composite fields of wet and dry years are compared. The result is that rainfall is related to El Ni?o- Southern Oscillation (ENSO) phenomenon and circulation over the Pacific Ocean. The prediction scheme, using multiple linear regressions, showed that 46% of the SPI variance can be explained by this model. The scheme was validated by using a cross-validation method, and significant correlations are detected between observed and forecast SPI. A polynomial model is used and it little improved the linear one, explaining the 49% of the SPI variance. The analysis shows that circulation indicators are useful to predict winter rainfall behavior.
基金supported by the National Basic R&D Program of China(Grant No.2015CB954001)the National Natural Science Foundation of China(Grant No.41876080)。
文摘At the global scale,atmospheric inputs of nitrogen are an important source of the new nitrogen that supports new marine production,especially in oligotrophic open oceans and marginal seas.This study reports quantities of atmospheric deposition of dissolved inorganic nitrogen(DIN)to the largest marginal sea in the North Pacific(the oligotrophic South China Sea,SCS)based primarily on rainwater sampling in the open northwestern region(Yongxing Island)from 2013 to 2015,and aerosol sampling from the SCS basin in June 2017.Atmospheric wet and dry deposition of DIN and their potential contributions to productivity were estimated.The volume-weighted mean rainwater concentrations during the wet and dry seasons were 4.9 and 18.1μmol L-1 for N+N(NO3-+NO2-),and 5.7 and 4.0μmol L-1 for NH4+,respectively.Rainwater concentrations of DIN were lower in the marginal seas than in the open ocean.The aerosol NO3-concentration was 1.15±1.18μg m-3 during the wet season,which is slightly lower than reported for the East China Sea and East Sea,but higher than in the Arabian Sea.Monthly wet and dry deposition rates ranged from 0.4-3.9 and 0.4-1.2 mmol m-2 mon-1 for NO3-,and 0.2-1.3 and 0.01-0.02 mmol m-2 mon-1 for NH4+,respectively.The annual wet and dry deposition fluxes of DIN were estimated to be 16.8 and 10.1 mmol m-2yr-1,respectively.Compared to other marginal seas,the SCS receives less atmospheric NO3-inputs than the Yellow Sea,East China Sea,East Sea,and northeastern Mediterranean Sea.The total atmospheric DIN deposition may account for 1.8-11.1%of the nitrogen supporting new production and 0.7-1.8%of the nitrogen supporting primary production.
基金This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[XDA20060501]the National Natural Science Foundatin of China[91637208].
文摘Based on site-observation data,NCEP–NCAR reanalysis data,and Climatic Research Unit gridded data,the rainfall variability over Tanzania during late austral summer(January–March,JFM)was analyzed for the period 1961–2011.Further,the associated atmospheric circulation and SST anomalies(SSTAs)were explored to understand the mechanisms of dry-and wet-year cases based on an interannual time scale.The correlation,Morlet wavelet power spectrum,and composite analysis methods were employed.The results showed that the JFM standardized rainfall anomaly time series exhibited significant time scales of variability at interannual(2–8 years)and quasidecadal(8–12 years).During dry years,anomalous anticyclonic northeasterly flow originating from western tropical Indian and southeast trades from the Indian Ocean to the southeast were associated with subsiding dry air,which resulted in suppression of rainfall as observed.In the typical wet-year cases,meanwhile,anomalous westerlies from the tropical and southeast Atlantic were strengthened over the Congo basin,delivering more precipitation to the region.Significant correlation was exhibited over the western tropical and southeast Indian Ocean,as well as the southeast and tropical Atlantic Ocean.These SSTA patterns favored atmospheric general circulation anomalies that were closely related to JFM rainfall over Tanzania.