To study the mechanism of SO2 and Hg removal from flue gas, an experimental packed bed reactor was designed to simulate the dry FGD, where a mixture of lime and fly ash in ratio 1:3 w/w was used as the S02 and Hg sor...To study the mechanism of SO2 and Hg removal from flue gas, an experimental packed bed reactor was designed to simulate the dry FGD, where a mixture of lime and fly ash in ratio 1:3 w/w was used as the S02 and Hg sorbent, and steam at temperature of 100 ℃ was applied for activation of the sorbent, while the activation time set to 20 rain. The experimental factors including the SO2/Hg sorbent characteristics, 50% breakthrough time for SO2/Hg removal, sorbent packed bed depth and reaction temperature were investigated. The experimental results show that after steam activation, the BET specific surface area and specific pore volume increased from 37.8 to 45.5 m^2/g and from 0.42 to 0.51 cm^3/g, respectively. With activation of the sorbent by steam, the 50% breakthrough times of SO2 and Hg removal increased from 34 to 42 rain and from 23 to 45 rain, respectively. When the packed bed depth was increased from 5 to 25 ram. the 50% breakthrough times for Hg and S02 removal increased from 12 to 52 rain and from 6 to 47 rain, respectively. With the increase of the reaction temperature, the 50% breakthrough of SO2/Hg removal decreased accordingly. Steam activation can efficiently improve SO2/Hg removal simultaneously.展开更多
The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200...The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200℃ for 60 min and then mixed with the slag powder to form FGD gypsum-slag powder combined admixture in which the SO3 content was 3.5wt%. Cement was partially and equivalently replaced by slag powder alone or FGD gypsum-slag powder, at concentration of 25wt%, 40wt%, and 50wt%, respectively. The setting times, hydration products, total porosity and pore size distributions of the paste were determined. The compressive strength and drying shrinkage of cement mortar and concrete were also tested. The experimental results show that, in the presence of FGD gypsum, the setting times are much slower than those of pastes in the absence of FGD gypsum. The combination of FGD gypsum and slag powder provides synergistic benefits above that of slag powder alone. The addition of FGD gypsum provides benefit by promoting ettringite formation and forms a compact microstructure, increasing the compressive strength and reduces the drying shrinkage of cement mortar and concrete.展开更多
For the purpose of effective and economic desulfurization of flue-gas, the predominance area diagram of the Mn-S-O system at different temperatures was constructed based on the thermodynamic data obtained from the lit...For the purpose of effective and economic desulfurization of flue-gas, the predominance area diagram of the Mn-S-O system at different temperatures was constructed based on the thermodynamic data obtained from the literatures. It is seen from this figure that flue-gas desulfurization by manganese oxides is feasible from the thermodynamic point of view. Additionally, the most appropriate temperature range for flue-gas desulfurization is between 600 and 800 K, and the reaction is strongly exothermic to maintain the heat balance. The natural manganese ores encompass large tunnels that exhibit large surface areas and highly chemical activity, which can provide a high enough SO2 removing efficiency. From the superposition of the diagrams of Mn-S-O and Fe-S-O systems, it is found that there is a coexistent stability region of MnSO4 and Fe2O3, which provides the possibility of desulfurization by selective sulfation without ferric sulfate forming. A multi-stage desulfurization system has been discussed briefly.展开更多
基金supported by the National High-Tech R&D Program of China (No. 2008AA06Z318)the Ministry of Environmental Protection of China (Nos. 201009048 and 200909025)
文摘To study the mechanism of SO2 and Hg removal from flue gas, an experimental packed bed reactor was designed to simulate the dry FGD, where a mixture of lime and fly ash in ratio 1:3 w/w was used as the S02 and Hg sorbent, and steam at temperature of 100 ℃ was applied for activation of the sorbent, while the activation time set to 20 rain. The experimental factors including the SO2/Hg sorbent characteristics, 50% breakthrough time for SO2/Hg removal, sorbent packed bed depth and reaction temperature were investigated. The experimental results show that after steam activation, the BET specific surface area and specific pore volume increased from 37.8 to 45.5 m^2/g and from 0.42 to 0.51 cm^3/g, respectively. With activation of the sorbent by steam, the 50% breakthrough times of SO2 and Hg removal increased from 34 to 42 rain and from 23 to 45 rain, respectively. When the packed bed depth was increased from 5 to 25 ram. the 50% breakthrough times for Hg and S02 removal increased from 12 to 52 rain and from 6 to 47 rain, respectively. With the increase of the reaction temperature, the 50% breakthrough of SO2/Hg removal decreased accordingly. Steam activation can efficiently improve SO2/Hg removal simultaneously.
基金Funded by the National Natural Science Foundation of China(Nos.51208370,51172164)the Doctoral Program of Higher Education of China(No.20110072120046)+1 种基金the Fundamental Research Funds for the Central Universities(No.0500219170)the Opening Measuring Fund of LargeApparatus of Tongji University(No.0002012011)
文摘The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200℃ for 60 min and then mixed with the slag powder to form FGD gypsum-slag powder combined admixture in which the SO3 content was 3.5wt%. Cement was partially and equivalently replaced by slag powder alone or FGD gypsum-slag powder, at concentration of 25wt%, 40wt%, and 50wt%, respectively. The setting times, hydration products, total porosity and pore size distributions of the paste were determined. The compressive strength and drying shrinkage of cement mortar and concrete were also tested. The experimental results show that, in the presence of FGD gypsum, the setting times are much slower than those of pastes in the absence of FGD gypsum. The combination of FGD gypsum and slag powder provides synergistic benefits above that of slag powder alone. The addition of FGD gypsum provides benefit by promoting ettringite formation and forms a compact microstructure, increasing the compressive strength and reduces the drying shrinkage of cement mortar and concrete.
基金Project(51344006)supported by the National Natural Science Foundation of China
文摘For the purpose of effective and economic desulfurization of flue-gas, the predominance area diagram of the Mn-S-O system at different temperatures was constructed based on the thermodynamic data obtained from the literatures. It is seen from this figure that flue-gas desulfurization by manganese oxides is feasible from the thermodynamic point of view. Additionally, the most appropriate temperature range for flue-gas desulfurization is between 600 and 800 K, and the reaction is strongly exothermic to maintain the heat balance. The natural manganese ores encompass large tunnels that exhibit large surface areas and highly chemical activity, which can provide a high enough SO2 removing efficiency. From the superposition of the diagrams of Mn-S-O and Fe-S-O systems, it is found that there is a coexistent stability region of MnSO4 and Fe2O3, which provides the possibility of desulfurization by selective sulfation without ferric sulfate forming. A multi-stage desulfurization system has been discussed briefly.