Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to...Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.展开更多
The forest industry operates in a dynamic and global market where change and competition are the rule rather than the exception. The color of wood is one of the most attractive features for the modem wood industry. Ev...The forest industry operates in a dynamic and global market where change and competition are the rule rather than the exception. The color of wood is one of the most attractive features for the modem wood industry. Even when wood is chosen for its structural qualities, attractive and decorative colors are usually an important factor. In many applications, particularly in furniture, decorative products, decorative veneers and flooring, accurate matching of the color of different samples is required. Wood attributes and properties are important because they have a direct bearing on market opportunities and consumer acceptance for many types of manufactured wood products. The aim of this review is to identify causes of wood discoloration and advances in drying technology to overcome this problem. Wood discoloration is a complex phenomenon, mainly affected by heat, light, physiological and biochemical reactions, as well as from attack by microorganisms.展开更多
Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic modeling.A plasma...Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic modeling.A plasma chemistry kinetic mechanism incorporating the reactions involving vibrational excitation of CH4,CO2,H2 and CO molecules as well as the low temperature He/CH4/CO2 conversion pathways was developed and validated.The calculation results showed that at lower E/N values(<150 Td)large population of energized electrons generated in a He/CH4/CO2 discharge resulted in an intensification of vibrational excitation.Despite the large generation of vibration,the vibrationally excited molecules in a 0.5/0.25/0.25 of He/CH4/CO2 discharge mixture were easy to relax,due to the strong coupling of the vibration of different molecules in a gas mixture.The results showed that the moderate levels of the vibrational excitation,such as CO2(v10,11,...,18)and CO(v9,10),presented most efficient in the stimulation of species generation including CO,CH2 O,CH3 OH,C2 H4 and C2 H6.Specifically,under conditions of E/N of 108 Td,14.9%of CO formation was estimated from the recombination of CO2(v)with CH3 and H,CO2(v)+CH3→CH3 O+CO,CO2(v)+H→CO+OH.Also,4.8%of C2 H4 formation was from the recombination reaction CH4(v)+CH→C2 H4+H.These results highlight the strong roles of vibrational states in a complex plasma chemistry system.展开更多
Y 0.9-xGd xEu 0.1BO 3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (CG) methods. The PL intensity of phospho...Y 0.9-xGd xEu 0.1BO 3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (CG) methods. The PL intensity of phosphors increases with the increase of x value in Y 0.9-xGd xEu 0.1BO 3 (prepared by SD) due to an energy migration process like Gd 3+-(Gd 3+) n-Eu 3+ occurred in the material. Compared with the latter two methods, the phosphor particles prepared by spray drying method have a better morphology, such as homogeneous size (about 1~3 μm) with spherical shape and smooth surface. Furthermore, the spray drying-derived phosphors have higher photoluminescence (PL) intensity than those by citrate gel method, but still a little lower than those by the solid state method.展开更多
The chlorine(Cl2)drying technology using ionic liquids(ILs)as absorbents was proposed for the first time and systematically investigated from the molecular level scaled up to the industrial level.The hygroscopic IL[EM...The chlorine(Cl2)drying technology using ionic liquids(ILs)as absorbents was proposed for the first time and systematically investigated from the molecular level scaled up to the industrial level.The hygroscopic IL[EMIM][CH3SO3]was screened as a suitable absorbent from 238 potential IL candidates consisting of 14 cations and 17 anions,by calculating the Cl2 and H2O solubility and separation selectivity of Cl2 to H2O in different ILs based on the COSMO-RS model.The microscopic atomic and molecular insights into the separation mechanisms were deeply revealed by using COSMO-RS model analyses(i.e.,σ-profiles,σ-potentials,excess enthalpies,entropies,and Gibbs free energies)and quantum chemistry calculation(binding energies and weak interaction analyses).The Cl2 solubility in pure IL and H2O+IL systems were predicted by the COSMO-RS model,and the results agree with the microscopic mechanism identification.Moreover,the strict equilibrium stage model employed with the COSMO-RS model parameters was built to perform the process simulation,and continuous Cl2 drying with ILs was conceptually designed and optimized at industrial scale.It was confirmed that[EMIM][CH3SO3]is a very promising absorbent leading to a less IL amount,a much lower energy consumption than the other IL[EMIM][BF4],which has a very bright industrialization potential used for Cl2 drying technology.展开更多
The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamenta...The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics~ chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post- discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.展开更多
目的总结地高辛血药质量浓度监测方法,寻求最适的测定方法。方法对近年来国内外与地高辛监测相关的文献进行检索综述分析。结果地高辛血药浓度测定方法很多,常用方法主要有:FPIA、酶免疫分析法、RIA、CLIA、乳胶免疫抑制法、干化学法、H...目的总结地高辛血药质量浓度监测方法,寻求最适的测定方法。方法对近年来国内外与地高辛监测相关的文献进行检索综述分析。结果地高辛血药浓度测定方法很多,常用方法主要有:FPIA、酶免疫分析法、RIA、CLIA、乳胶免疫抑制法、干化学法、HPLC法等。结论通过比较分析其中RIA、CLIA、EIA和HPLC MS 4种方法更好。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41972265)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-57)+1 种基金the Gansu Province Science Foundation(Grant No.20JR10RA492)Special thanks to the Environmental Research and Education Foundation for supporting the first author(Y.Tan)through a fellowship for his study at the University of Wisconsin-Madison.
文摘Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.
文摘The forest industry operates in a dynamic and global market where change and competition are the rule rather than the exception. The color of wood is one of the most attractive features for the modem wood industry. Even when wood is chosen for its structural qualities, attractive and decorative colors are usually an important factor. In many applications, particularly in furniture, decorative products, decorative veneers and flooring, accurate matching of the color of different samples is required. Wood attributes and properties are important because they have a direct bearing on market opportunities and consumer acceptance for many types of manufactured wood products. The aim of this review is to identify causes of wood discoloration and advances in drying technology to overcome this problem. Wood discoloration is a complex phenomenon, mainly affected by heat, light, physiological and biochemical reactions, as well as from attack by microorganisms.
基金supported by the National Natural Science Foundation of China(Grant No.21676024)the Beijing Natural Science Foundation(Grant No.3182029)。
文摘Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic modeling.A plasma chemistry kinetic mechanism incorporating the reactions involving vibrational excitation of CH4,CO2,H2 and CO molecules as well as the low temperature He/CH4/CO2 conversion pathways was developed and validated.The calculation results showed that at lower E/N values(<150 Td)large population of energized electrons generated in a He/CH4/CO2 discharge resulted in an intensification of vibrational excitation.Despite the large generation of vibration,the vibrationally excited molecules in a 0.5/0.25/0.25 of He/CH4/CO2 discharge mixture were easy to relax,due to the strong coupling of the vibration of different molecules in a gas mixture.The results showed that the moderate levels of the vibrational excitation,such as CO2(v10,11,...,18)and CO(v9,10),presented most efficient in the stimulation of species generation including CO,CH2 O,CH3 OH,C2 H4 and C2 H6.Specifically,under conditions of E/N of 108 Td,14.9%of CO formation was estimated from the recombination of CO2(v)with CH3 and H,CO2(v)+CH3→CH3 O+CO,CO2(v)+H→CO+OH.Also,4.8%of C2 H4 formation was from the recombination reaction CH4(v)+CH→C2 H4+H.These results highlight the strong roles of vibrational states in a complex plasma chemistry system.
文摘Y 0.9-xGd xEu 0.1BO 3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (CG) methods. The PL intensity of phosphors increases with the increase of x value in Y 0.9-xGd xEu 0.1BO 3 (prepared by SD) due to an energy migration process like Gd 3+-(Gd 3+) n-Eu 3+ occurred in the material. Compared with the latter two methods, the phosphor particles prepared by spray drying method have a better morphology, such as homogeneous size (about 1~3 μm) with spherical shape and smooth surface. Furthermore, the spray drying-derived phosphors have higher photoluminescence (PL) intensity than those by citrate gel method, but still a little lower than those by the solid state method.
基金financially supported by the National Postdoctoral Program for Innovative Talents(BX20190021)the National Natural Science Foundation of China(No.22008003)
文摘The chlorine(Cl2)drying technology using ionic liquids(ILs)as absorbents was proposed for the first time and systematically investigated from the molecular level scaled up to the industrial level.The hygroscopic IL[EMIM][CH3SO3]was screened as a suitable absorbent from 238 potential IL candidates consisting of 14 cations and 17 anions,by calculating the Cl2 and H2O solubility and separation selectivity of Cl2 to H2O in different ILs based on the COSMO-RS model.The microscopic atomic and molecular insights into the separation mechanisms were deeply revealed by using COSMO-RS model analyses(i.e.,σ-profiles,σ-potentials,excess enthalpies,entropies,and Gibbs free energies)and quantum chemistry calculation(binding energies and weak interaction analyses).The Cl2 solubility in pure IL and H2O+IL systems were predicted by the COSMO-RS model,and the results agree with the microscopic mechanism identification.Moreover,the strict equilibrium stage model employed with the COSMO-RS model parameters was built to perform the process simulation,and continuous Cl2 drying with ILs was conceptually designed and optimized at industrial scale.It was confirmed that[EMIM][CH3SO3]is a very promising absorbent leading to a less IL amount,a much lower energy consumption than the other IL[EMIM][BF4],which has a very bright industrialization potential used for Cl2 drying technology.
基金performed using HPC resources from CALMIP(Grant 2011-[P1053])supported by the French Agence Nationale de la Recherche under Project ANR-12-BS09-0019-1 through REMOVAL
文摘The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics~ chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post- discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.
文摘目的总结地高辛血药质量浓度监测方法,寻求最适的测定方法。方法对近年来国内外与地高辛监测相关的文献进行检索综述分析。结果地高辛血药浓度测定方法很多,常用方法主要有:FPIA、酶免疫分析法、RIA、CLIA、乳胶免疫抑制法、干化学法、HPLC法等。结论通过比较分析其中RIA、CLIA、EIA和HPLC MS 4种方法更好。