期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adhesion Wear on Tool Rake and Flank Faces in Dry Cutting of Ti-6Al-4V 被引量:2
1
作者 DENG Jianxin LI Yousheng ZHANG Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1089-1094,共6页
Titanium alloys are very chemically reactive and,therefore,have a tendency to weld to the cutting tool during machining.The deterioration in the tool life caused by adhesion is a serious problem when titanium alloys a... Titanium alloys are very chemically reactive and,therefore,have a tendency to weld to the cutting tool during machining.The deterioration in the tool life caused by adhesion is a serious problem when titanium alloys are cut using carbide tools.The chemical reactivity of titanium alloys with carbide tool materials and their consequent welding by adhesion onto the cutting tool during dry cutting leads to excessive chipping,premature tool failure,and poor surface finish.In the present study,dry turning and milling tests were carried out on Ti-6Al-4V alloys with WC?Co carbide tools.The adhesion on the tool rake and flank face was explored,the adhesive joint interface between the workpiece materials and tools were observed.SEM observation showed that adhesion can be observed both on the rake and the flank face,and was more pronounced in rake face than in flank face.There was evidence of element diffusion from the tool rake face to the adhering layer(vice versa) through the adhesive joint interface,which leads to the tool element loss and microstructure change.While the adhering materials at the flank face can be easily separated from the joint interface owing to the lower temperature and less pressure at the flank face,the adhesive wear attack results in an abrasive wear in the flank face.Moreover,adhesion is more notable in turning than in milling.The proposed research provides references for studying the adhesion between the workpiece materials and the tools,the adhesion mechanisms and their effect on the tool wear. 展开更多
关键词 adhesion wear dry cutting carbide tools Ti-6Al-4V alloy
下载PDF
Estimation of Fine Dust Particles Distribution in Machining Workshop Based on COwZ Model 被引量:1
2
作者 REN Fan LIU Fei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期346-354,共9页
Fine dust particles (diameter is less than 2.5 μm) generated during machining processes,especially dry cutting,are harmful to operators,because they remain suspended in the air for long time and have marked concent... Fine dust particles (diameter is less than 2.5 μm) generated during machining processes,especially dry cutting,are harmful to operators,because they remain suspended in the air for long time and have marked concentration gradients in workshop.Hence studies about cutting dust source states and indoor air quality prediction have been developed.However,few researches focus on the distribution state of the cutting dust,dynamic status of fine dust particles,and environment estimating of the machining workshop.The machining workshops have diversified architectural structures,complex working conditions,so the dust emission is sensitive dynamic.According to these features,after analysis of the static and dynamic influence factors,this paper proposes a method and establishes a model to estimate the fine dust particles distribution based on COwZ (COMIS (conjunction of multizone infiltration specialists) with sub-zones) model when only dry cutting is processed just needing various working parameters.And two key technologies are discussed:the description of the machine tools using sub-zones of COwZ model considering the local obstacle effects of machine tools themselves;description and implementation of dynamic process of cutting dust emission with a new concept of equivalent source strengths.At last,multi-point experiments in a hybrid ventilation machining workshop prove the method is practical.Good agreement was observed between the estimation results and the experimental measurements for the investigated conditions.The proposed method can supply reference data for green manufacturing. 展开更多
关键词 COwZ model dry cutting fine dust particles dust emission green manufacturing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部