期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Research on microstructure and high-temperature friction and wear properties of a cobalt-based alloy for hot extrusion die
1
作者 QU Haixia TANG Chenglong GU Tingquan 《Baosteel Technical Research》 CAS 2020年第1期8-18,共11页
The hot extrusion die is a key tool for determining the surface quality and dimensional accuracy of extruded products.Because its service process is subject to high temperature,high pressure,and wear,it must be resist... The hot extrusion die is a key tool for determining the surface quality and dimensional accuracy of extruded products.Because its service process is subject to high temperature,high pressure,and wear,it must be resistant to these conditions.In this paper,the high-temperature friction and wear properties of a cobalt(Co)-based alloy were investigated and compared with those of a titanium carbide(TiC)cemented material.The results show that the high-temperature wear performance of the Co-based alloy is better than that of the TiC cemented material,and that Co-based materials have the potential for replacing TiC cemented materials as hot-extrusion-die materials.Due to the high density and good combination of the matrix and carbide,the carbides do not easily peel off from the matrix during the wear process.Due to the higher impact toughness of the Co-based alloys,microcracks that can cause worn-surface peeling are not easily generated.As a result,the high-temperature wear performance of Co-based alloys is found to be better than that of TiC cemented materials. 展开更多
关键词 hot extrusion die cobalt-based ALLOY MICROSTRUCTURE high-temperature friction and wear properties
下载PDF
Research on material design and high-temperature friction and wear properties of new graphitic steel
2
作者 QU Haixia HOU Xiaoguunn HAN Jianzeen 《Baosteel Technical Research》 CAS 2020年第3期12-22,共11页
To solve the problem of the severe mismatch between the product and roll materials in the preliminary rolling line,a new graphitic steel material was designed,its microstructure and high-temperature friction and wear ... To solve the problem of the severe mismatch between the product and roll materials in the preliminary rolling line,a new graphitic steel material was designed,its microstructure and high-temperature friction and wear properties were investigated.Moreover,the feasibility of replacing semi-steel with this new material in the V1 stand roll was studied herein.The results show that the graphitic steel matrix is strengthened by silicon and nickel elements.The presence of spherical graphite also provides self-lubrication and heat conduction and prevents the propagation of cracks.Carbides in the appropriate amount and size strengthen the matrix,reduce the cracking effect of the matrix,and are not easily broken,thereby reducing high-temperature abrasive wear.Under the same hightemperature friction and wear conditions,compared with semi-steel,the wear-scar surface of graphitic steel exhibits less wear-scar depth and wear volume,a smaller friction coefficient,reduced oxide layer thickness,and fewer instances of peeling and microcracks.Therefore,the newly designed graphitic steel has higher wear resistance and hot-crack resistance than semi-steel,which makes it feasible for use in replacing semi-steel as a new V1 frame roll material in the blooming mill. 展开更多
关键词 graphitic steel MICROSTRUCTURE high-temperature friction and wear properties high-temperature tensile strength thermal cracking resistance
下载PDF
Dry Sliding Friction and Wear Properties and Wear Mechanism of SiC_P/Al Composites
3
作者 金云学 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第S1期24-28,共5页
Dry sliding friction and wear properties of A356/SiC composites against AISI D2 were analyzed by means of SEM,XRD and EDS.Results indicated that the wear rate of A356/SiC increased with increase of the applied load.Mi... Dry sliding friction and wear properties of A356/SiC composites against AISI D2 were analyzed by means of SEM,XRD and EDS.Results indicated that the wear rate of A356/SiC increased with increase of the applied load.Mild wear took place under lower load,transferring to severe wear at the load heavier than 400 N.Mechanical mixed layer(MML) formed on worn surface during dry sliding friction process,whose thickness became deeper with increasing load.Cracks formed easily in MML and spread transversely,resulting in peeling wear.The wear mechanism of the composite is that oxidation wear mechanism was dominant under low load,with the formation of tiny powdery debris.As the load enhanced,peeling wear was primary due to laminar debris detached from the MML,including oxidation and adhesive wear at the same time,with the load at 350-450 N,adhesive wear with irregular debris and peeling wear were predominant. 展开更多
关键词 A356/SiC dry friction wear mechanism wear property
下载PDF
Friction and Wear Mechanism of Unlubricated 304L Austenitic Stainless Steel at Room Temperature
4
作者 陈国清 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期222-226,共5页
To explore wear mechanism of stainless steel used in nuclear pump, the wear properties and the worn surface characteristics of unlubricated 304L austenitic stainless steel on itself were investigated in air at room te... To explore wear mechanism of stainless steel used in nuclear pump, the wear properties and the worn surface characteristics of unlubricated 304L austenitic stainless steel on itself were investigated in air at room temperature. The experimental results demonstrated that the wear rate of the material decreased with the increase of the wear time. The friction coefficient fluctuated severely when the applied load was 120 N. At 120 N the wear rate was much higher than that of the applied load of 70 N. At 70 N the wear rate did not show much difference from that of 30 N. The wear mechanism was adhesive and abrasive wear under different load at the initial stage of the wear test. Then, the main wear mechanism changed with the wearing time and the applied load. 展开更多
关键词 304L dry sliding friction wear property wear mechanism
下载PDF
Sliding wear behaviors of Nomex fabric/phenolic composite under dry and water-bathed sliding conditions 被引量:4
5
作者 Guina REN Zhaozhu ZHANG +3 位作者 Xiaotao ZHU Xuehu MEN Wei JIANG Weimin LIU 《Friction》 SCIE EI CAS 2014年第3期264-271,共8页
A Nomex fabric/phenolic composite was prepared,and its tribological properties were evaluated under dry and water‐bathed sliding conditions by a pin‐on‐disk tribometer.The resulting size of the friction coefficient... A Nomex fabric/phenolic composite was prepared,and its tribological properties were evaluated under dry and water‐bathed sliding conditions by a pin‐on‐disk tribometer.The resulting size of the friction coefficient for the Nomex fabric/phenolic composite in the study occurred in the following order:dry sliding condition>distilled water‐bathed sliding condition>sea water‐bathed sliding condition.The fabric composite’s wear rate from high to low was as follows:distilled water‐bathed sliding condition>sea water‐bathed sliding condition>dry sliding condition.Under water‐bathed sliding conditions,penetration of water into the cracks accelerated the composite’s invalidation process,resulting in a higher wear rate.We also found that the extent of corrosion and transfer film formed on the counterpart pin significantly influenced the wear rate of the Nomex fabric composite.Discussion of the Nomex fabric composite’s wear mechanisms under the sliding conditions investigated is provided on the basis of the characterization results. 展开更多
关键词 Nomex fabric/phenolic composite friction and wear property dry and water‐bathed sliding condition
原文传递
Bioinspired PcBN/hBN fibrous monolithic ceramic:High-temperature crack resistance responses and self-lubricating performances 被引量:1
6
作者 Shu-na CHEN Hengzhong FAN +4 位作者 Yunfeng SU Jicheng LI Junjie SONG Litian HU Yongsheng ZHANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第9期1391-1403,共13页
The high strength and toughness of natural materials are mainly determined by a combination of mechanisms operating at different length scales,which can be used as a strategy to reduce the intrinsic brittleness of cer... The high strength and toughness of natural materials are mainly determined by a combination of mechanisms operating at different length scales,which can be used as a strategy to reduce the intrinsic brittleness of ceramics.Inspired by the architectures of bamboo,the polycrystalline cubic boron nitride/hexagonal boron nitride(PcBN/hBN)fibrous monolithic ceramics with a long fiber arrangement structure was constructed with PcBN fiber cells and hBN cell boundaries,and its crack resistance responses and tribological performances were investigated.The composite ceramic failed in a non-brittle manner with the rising resistance curve(R-curve)behavior,which was attributed to multiscale crack effects in the hierarchical architecture.The maximum crack growth toughness was extremely high(approximately 21 MPa×m^(1/2)),corresponding to a 270%increase over the crack initiation toughness.Excellent fracture resistance could be retained even above 1000℃.Moreover,the composite ceramic exhibited low and stable friction coefficients(approximately 0.33)when paired with a Si_(3)N_(4)pin at high temperature(1000℃),owing to the lubrication function of hBN cell boundaries with weak van der Waals forces and a small amount of liquid B_(2)O_(3)produced.As a result,a synergistic improvement of mechanical and tribological properties at high temperature(1000℃)was realized by combining bionic structure and tribological design.It provides important theoretical and technical support for expanding the application of self-lubricating composite ceramics in harsh environments. 展开更多
关键词 self-lubricating composite ceramic bioinspired structure resistance curve(R-curve) high-temperature property friction and wear
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部