When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We deve...When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage.展开更多
The most common method of shipping cells between institutes and companies is sending them frozen, usually treated with anti-freeze solution (most commonly DMSO because it is less toxic than many alternatives), and the...The most common method of shipping cells between institutes and companies is sending them frozen, usually treated with anti-freeze solution (most commonly DMSO because it is less toxic than many alternatives), and then packaging them in dry ice for shipment. However many countries place restrictions on dry ice shipments. An alternative to shipping frozen cell vials is to send flasks of growing cells in media. This also has problems because cells in media have limited viability and the flasks can leak. Here we report on an alternative method for shipping viable cells at ambient temperature without dry ice or in media filled flasks. In this study we report on the development and properties of HemSol?. This is an inexpensive, eco-friendly and protects cell integrity at ambient temperature while maintaining viability. We have previously shown that HemSol? protects platelet and RBC function in cold storage and circulating tumor cells up to 6 days. Therefore we wanted to know if HemSol? could also be used to transport live cells. Since HemSol? is a liquid, we experimented with encasing the cells with HemSol? and gelatin so as to prevent dry ice shipment of cells and circumvent the shipping of cells in media. We performed mock shipping experiments where cells were stored in HemSol? gel kept at room temperature on a lab benchtop and cells stored in dry ice was also kept on lab benchtop for up to 2 days. After the mock shipping period, we analyzed cells for their functions. Our results show that cells in HemSol? gel have greater than 95% viability and restored biological functions in 2 hours, whereas, cells shipped in dry ice required more than 24 hours to recover and needed media change to remove the DMSO.展开更多
基金supported by the State Key Laboratory Open Fund(No.HKLBEF202004)the Natural Science Foundation of Jiangsu Province(No.BK20201313)+2 种基金the Key Program of National Natural Science Foundation of China(No.51934007)the Major Scientific and Technological Innovation Program in Shandong Province(No.2019JZZY020505)the National Key Research and Development Program of China(No.2022YFC3004700)。
文摘When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage.
文摘The most common method of shipping cells between institutes and companies is sending them frozen, usually treated with anti-freeze solution (most commonly DMSO because it is less toxic than many alternatives), and then packaging them in dry ice for shipment. However many countries place restrictions on dry ice shipments. An alternative to shipping frozen cell vials is to send flasks of growing cells in media. This also has problems because cells in media have limited viability and the flasks can leak. Here we report on an alternative method for shipping viable cells at ambient temperature without dry ice or in media filled flasks. In this study we report on the development and properties of HemSol?. This is an inexpensive, eco-friendly and protects cell integrity at ambient temperature while maintaining viability. We have previously shown that HemSol? protects platelet and RBC function in cold storage and circulating tumor cells up to 6 days. Therefore we wanted to know if HemSol? could also be used to transport live cells. Since HemSol? is a liquid, we experimented with encasing the cells with HemSol? and gelatin so as to prevent dry ice shipment of cells and circumvent the shipping of cells in media. We performed mock shipping experiments where cells were stored in HemSol? gel kept at room temperature on a lab benchtop and cells stored in dry ice was also kept on lab benchtop for up to 2 days. After the mock shipping period, we analyzed cells for their functions. Our results show that cells in HemSol? gel have greater than 95% viability and restored biological functions in 2 hours, whereas, cells shipped in dry ice required more than 24 hours to recover and needed media change to remove the DMSO.