Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accum...Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accumulation of lubricant in front of patterned islandic spots creates thrusting to mating part and subsequently reduces contact between the mating couple. Whilst wear debris is likely to be spun off the plateau of the spots to their neighbouring valleys so as to reduce wear. Hence, it gives favorable tribological characteristics. Aiming at verifying such mechanisms, studies were performed on M2 steel disc specimens slid with ASSAB 17 tool steel pin. The M2 steel disc specimens were respectively (i) machined with non-patterned (NP), (ii) etched to produce in-lined (INE) islandic patterns, and (iii) etched to produce staggered (STE) islandic spot patterns. Results indicated that the INE patterned discs gave most favorable wear characteristics, the NP of the worse characteristics whilst the STE ranged in the middle. However, the actual contact mechanism leads to the descending sequence of favorable friction behaviors nominally as: NP, INE and STE.展开更多
Sliding and spinning behaviors significantly affect the performance of rolling bearings,especially for dry-lubricated bearings,micro and macro sliding may lead to increased wear of the solid lubricating film.A unified...Sliding and spinning behaviors significantly affect the performance of rolling bearings,especially for dry-lubricated bearings,micro and macro sliding may lead to increased wear of the solid lubricating film.A unified rolling contact tribology analytical model is proposed for dry-lubricated angular contact ball bearings(ACBBs)considering the extreme conditions including high combined loads and rolling contact effects.A comprehensive solution framework is proposed to ensure the robustness of the model under different loading conditions.Equilibrium equations are solved to study the effects of friction coefficients,rotating speeds,and combined loads on the skidding and spinning characteristics of the ACBB.The results show that the rolling contact effects and combined loads significantly affect the skidding and spinning performance of the ACBB.Further analysis reveals that the skidding mechanism is related to the interaction between ball kinematical motion and traction forces.The developed analytical model is proved to more accurately predict the bearing kinematical and tribological behavior as it discards the raceway control hypothesis and considers the macro/micro-slipping,creepage,and self-spinning motions of the ball,which is validated using both the existing pure axial loading dry-lubricated ACBB model and the classical Jones–Harris model.The study would provide some guidance for the structure and lubrication design of dry-lubricated ACBBs.展开更多
In this paper, an equation for the calculation of the frictional torque of a dry-lubricated tapered roller bearing(TRB) is provided in which the effect of the roller skewing is emphasized. Calculations were performed ...In this paper, an equation for the calculation of the frictional torque of a dry-lubricated tapered roller bearing(TRB) is provided in which the effect of the roller skewing is emphasized. Calculations were performed to investigate the effect of the roller skewing on the torque of dry-lubricated TRB for two representative preload methods, that is, axial force preload and axial displacement preload. The results show that a proper roller skewing angle under axial force preload benefits the reduction of the TRB torque. However, the roller skewing angle should not exceed a certain critical value;otherwise, it will cause a steep rise in the TRB torque. Finally, the critical value of the roller skewing angle as a function of the friction coefficient and cage pocket clearance is presented. The developed torque model provides a tool for the internal design and torque optimization of dry-lubricated TRBs.展开更多
Predicting rolling bearing fatigue life requires knowledge of the three-dimensional(3D)stress fields in the roller and raceway near the lubricated contact.Owing to the increasingly severe operating conditions,the effe...Predicting rolling bearing fatigue life requires knowledge of the three-dimensional(3D)stress fields in the roller and raceway near the lubricated contact.Owing to the increasingly severe operating conditions,the effect of localized features such as surface roughness,subsurface inclusions,and even the crystallographic structure of the material becomes important.Achieving such detail requires(locally)extremely dense gridding in simulations,which in 3D is a major challenge.Multigrid techniques have been demonstrated to be capable of solving such problems.In this study,multigrid techniques are shown to further increase the efficiency of the solution by exploiting local grid refinement while maintaining the simplicity of a uniform discretization.This is achieved by employing increasingly finer grids only locally,where the highest resolution is required.Results are presented for dry contact and elastohydrodynamically lubricated contact cases,circular as well as elliptic,with varying crystallographic structure,and with surface roughness.The results show that the developed algorithm is very well suited for detailed analysis,with also excellent prospects for computational diagnostics involving actual material crystallographic structure from electron backscatter diffraction measurements.展开更多
Grinding technology is an essential manufacturing operation,in particular,when a component with a superfinishing and an ultra-resolution is yearned.Meeting the required strict quality checklist with maintaining a high...Grinding technology is an essential manufacturing operation,in particular,when a component with a superfinishing and an ultra-resolution is yearned.Meeting the required strict quality checklist with maintaining a high level of productivity and sustainability is a substantive issue.The recent paper outlines the lubrication and cooling technologies and mediums that are used for grinding.Furthermore,it provides a basis for a critical assessment of the different lubrication/cooling techniques in terms of machining outputs,environmental impact,hygiene effect,etc.Meanwhile,the paper put light on the sustainability of different cooling/lubrication strategies.The sustainability of machining aims to get the product with the best accuracy and surface quality,minimum energy consumption,low environmental impact,reasonable economy,and minimum effect on worker’s health.The paper revealed that despite some cooling/lubrication mediums like mineral oils and semisynthetic,afford sufficient lubrication or cooling,they have a significant negative impact on the environment and public health.On the other hand,emulsions can overcome environmental problems but the economy and the energy consumption during grinding are still a matter of concern.Biodegradable and vegetable oils are considered eco-friendly oils,but they suffer from a lack of thermal stability which affects their ability of efficiently cooling.Using the cooling medium with the lowest amount can achieve the goal of the economy but it may be reflected negatively on the machinability.Furthermore,cryogenic lubrication doesn’t provide sufficient lubrication to reduce friction and hence energy consumption.The research described in the paper is such a comprehensive compilation of knowledge regarding the machinability and machining performance under different cooling and lubrication systems that it will aid the next generation of scientists in identifying current advancements as well as potential future directions of research on ecological aspects of machining for sustainability.展开更多
基金the National Natural Science Foundation of China(No. 50575173).
文摘Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accumulation of lubricant in front of patterned islandic spots creates thrusting to mating part and subsequently reduces contact between the mating couple. Whilst wear debris is likely to be spun off the plateau of the spots to their neighbouring valleys so as to reduce wear. Hence, it gives favorable tribological characteristics. Aiming at verifying such mechanisms, studies were performed on M2 steel disc specimens slid with ASSAB 17 tool steel pin. The M2 steel disc specimens were respectively (i) machined with non-patterned (NP), (ii) etched to produce in-lined (INE) islandic patterns, and (iii) etched to produce staggered (STE) islandic spot patterns. Results indicated that the INE patterned discs gave most favorable wear characteristics, the NP of the worse characteristics whilst the STE ranged in the middle. However, the actual contact mechanism leads to the descending sequence of favorable friction behaviors nominally as: NP, INE and STE.
基金This work was funded by the National Natural Science Foundation of China(Nos.52175119 and 61633001).The authors are also grateful for the support of Xi’an Aerospace Propulsion Institution(China Aerospace Science and Technology Corporation).
文摘Sliding and spinning behaviors significantly affect the performance of rolling bearings,especially for dry-lubricated bearings,micro and macro sliding may lead to increased wear of the solid lubricating film.A unified rolling contact tribology analytical model is proposed for dry-lubricated angular contact ball bearings(ACBBs)considering the extreme conditions including high combined loads and rolling contact effects.A comprehensive solution framework is proposed to ensure the robustness of the model under different loading conditions.Equilibrium equations are solved to study the effects of friction coefficients,rotating speeds,and combined loads on the skidding and spinning characteristics of the ACBB.The results show that the rolling contact effects and combined loads significantly affect the skidding and spinning performance of the ACBB.Further analysis reveals that the skidding mechanism is related to the interaction between ball kinematical motion and traction forces.The developed analytical model is proved to more accurately predict the bearing kinematical and tribological behavior as it discards the raceway control hypothesis and considers the macro/micro-slipping,creepage,and self-spinning motions of the ball,which is validated using both the existing pure axial loading dry-lubricated ACBB model and the classical Jones–Harris model.The study would provide some guidance for the structure and lubrication design of dry-lubricated ACBBs.
基金support of the National Natural Science Foundation of China (Nos. 51675120 and U1637206)
文摘In this paper, an equation for the calculation of the frictional torque of a dry-lubricated tapered roller bearing(TRB) is provided in which the effect of the roller skewing is emphasized. Calculations were performed to investigate the effect of the roller skewing on the torque of dry-lubricated TRB for two representative preload methods, that is, axial force preload and axial displacement preload. The results show that a proper roller skewing angle under axial force preload benefits the reduction of the TRB torque. However, the roller skewing angle should not exceed a certain critical value;otherwise, it will cause a steep rise in the TRB torque. Finally, the critical value of the roller skewing angle as a function of the friction coefficient and cage pocket clearance is presented. The developed torque model provides a tool for the internal design and torque optimization of dry-lubricated TRBs.
文摘Predicting rolling bearing fatigue life requires knowledge of the three-dimensional(3D)stress fields in the roller and raceway near the lubricated contact.Owing to the increasingly severe operating conditions,the effect of localized features such as surface roughness,subsurface inclusions,and even the crystallographic structure of the material becomes important.Achieving such detail requires(locally)extremely dense gridding in simulations,which in 3D is a major challenge.Multigrid techniques have been demonstrated to be capable of solving such problems.In this study,multigrid techniques are shown to further increase the efficiency of the solution by exploiting local grid refinement while maintaining the simplicity of a uniform discretization.This is achieved by employing increasingly finer grids only locally,where the highest resolution is required.Results are presented for dry contact and elastohydrodynamically lubricated contact cases,circular as well as elliptic,with varying crystallographic structure,and with surface roughness.The results show that the developed algorithm is very well suited for detailed analysis,with also excellent prospects for computational diagnostics involving actual material crystallographic structure from electron backscatter diffraction measurements.
基金funded by the Natural Science Foundation of China(Nos.52005174,52275421,51875192)Hunan Provincial Science Fund for Distinguished Young Scholars(No.2022JJ10010)+2 种基金Key Research and Development Program of Hunan Province(No.2022WK2003),the Natural Science Foundation of Hunan Province(Nos.2021JJ40064,2020JJ4193)the Natural Science Foundation of Changsha(No.kq2014048)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA25020317).The authors acknowledge the financial support.
文摘Grinding technology is an essential manufacturing operation,in particular,when a component with a superfinishing and an ultra-resolution is yearned.Meeting the required strict quality checklist with maintaining a high level of productivity and sustainability is a substantive issue.The recent paper outlines the lubrication and cooling technologies and mediums that are used for grinding.Furthermore,it provides a basis for a critical assessment of the different lubrication/cooling techniques in terms of machining outputs,environmental impact,hygiene effect,etc.Meanwhile,the paper put light on the sustainability of different cooling/lubrication strategies.The sustainability of machining aims to get the product with the best accuracy and surface quality,minimum energy consumption,low environmental impact,reasonable economy,and minimum effect on worker’s health.The paper revealed that despite some cooling/lubrication mediums like mineral oils and semisynthetic,afford sufficient lubrication or cooling,they have a significant negative impact on the environment and public health.On the other hand,emulsions can overcome environmental problems but the economy and the energy consumption during grinding are still a matter of concern.Biodegradable and vegetable oils are considered eco-friendly oils,but they suffer from a lack of thermal stability which affects their ability of efficiently cooling.Using the cooling medium with the lowest amount can achieve the goal of the economy but it may be reflected negatively on the machinability.Furthermore,cryogenic lubrication doesn’t provide sufficient lubrication to reduce friction and hence energy consumption.The research described in the paper is such a comprehensive compilation of knowledge regarding the machinability and machining performance under different cooling and lubrication systems that it will aid the next generation of scientists in identifying current advancements as well as potential future directions of research on ecological aspects of machining for sustainability.