The photosynthetic characteristics of flag leaf and the accumulation and remobilization of pre-anthesis dry mass(DM) and nitrogen(N) in vegetable organs in nine wheat cultivars under different source-sink manipula...The photosynthetic characteristics of flag leaf and the accumulation and remobilization of pre-anthesis dry mass(DM) and nitrogen(N) in vegetable organs in nine wheat cultivars under different source-sink manipulation treatments including defoliation(DF), spike shading(SS) and half spikelets removal(SR) were investigated. Results showed that the SS treatment increased the photosynthetic rate(Pn) of flag leaf in source limited cultivar, but had no significant effect on sink limited cultivar. The SR treatment decreased the Pn of flag leaf. Grain DM accumulation was limited by source in some cultivars, in other cultivars, it was limited by sink. Grain N accumulation was mainly limited by source supply. The contribution of pre-anthesis dry mass to grain yield from high to low was stem, leaf and chaff, while the contribution of pre-anthesis N to grain N from high to low was leaf, stem and chaff. Cultivars S7221 and TA9818 can increase the contribution of remobilization of DM and N to grain at the maximum ratio under reducing source treatments, which may be the major reason for these cultivars having lower decrease in grain yield and N content under reducing source treatments.展开更多
The presence of grassland biomes and species cannot be predicted by examining bottom up causes such as precipitation and temperature. Top down causes including herbivory and fire seem to be major controlling aspects w...The presence of grassland biomes and species cannot be predicted by examining bottom up causes such as precipitation and temperature. Top down causes including herbivory and fire seem to be major controlling aspects with other factors secondary. We examined soil depth and competitive ability of two North American C4 grasses in a greenhouse experiment. Changes in dry mass were determined and competitive intensity was calculated for both species. Species were grown separately or together in pots 30, 90, or 180 cm deep. When grown in monoculture, Schizachyrium scoparium total and belowground dry mass increased from the 30 to 90 cm depth, with no further significant increase from 90 to 180 cm. Aboveground dry mass did not increase significantly with depth. Total dry mass of Buchloe dactyloides increased significantly with depth when grown in monoculture. Aboveground dry mass increased from 30 to 90 cm depth but not from 90 to 180 cm. Belowground dry mass of B. dactyloides did not increase significantly with depth. In 180 cm pots, 53% of S. scoparium root dry mass was in the top 30 cm;74% of B. dactyloides root dry mass was in the top 30 cm. Roots of B. dactyloides were not found deeper than 90 cm. Aboveground dry mass of S. scoparium was not different in mixture or monoculture at any depth. Buchloe dactyloides aboveground dry mass in mixture was significantly lower than monoculture at the 30 cm depth, but not at 90 or 180 cm. The greatest competitive intensity was in the shallow soil pots. Soil depth could partially explain mosaics found in C4 grasslands where both species were found together with S. scoparium on deeper soils and B. dactyloides on shallower soils.展开更多
The accurate forecasting of tropical cyclones(TCs)is a challenging task.The purpose of this study was to investigate the effects of a dry-mass conserving(DMC)hydrostatic global spectral dynamical core on TC simulation...The accurate forecasting of tropical cyclones(TCs)is a challenging task.The purpose of this study was to investigate the effects of a dry-mass conserving(DMC)hydrostatic global spectral dynamical core on TC simulation.Experiments were conducted with DMC and total(moist)mass conserving(TMC)dynamical cores.The TC forecast performance was first evaluated considering 20 TCs in the West Pacific region observed during the 2020 typhoon season.The impacts of the DMC dynamical core on forecasts of individual TCs were then estimated.The DMC dynamical core improved both the track and intensity forecasts,and the TC intensity forecast improvement was much greater than the TC track forecast improvement.Sensitivity simulations indicated that the DMC dynamical core-simulated TC intensity was stronger regardless of the forecast lead time.In the DMC dynamical core experiments,three-dimensional winds and warm and moist cores were consistently enhanced with the TC intensity.Drier air in the boundary inflow layer was found in the DMC dynamical core experiments at the early simulation times.Water vapor mixing ratio budget analysis indicated that this mainly depended on the simulated vertical velocity.Higher updraft above the boundary layer yielded a drier boundary layer,resulting in surface latent heat flux(SLHF)enhancement,the major energy source of TC intensification.The higher DMC dynamical core-simulated updraft in the inner core caused a higher net surface rain rate,producing higher net internal atmospheric diabatic heating and increasing the TC intensity.These results indicate that the stronger DMC dynamical coresimulated TCs are mainly related to the higher DMC vertical velocity.展开更多
According to modeling simulation and experiments study, the heat and mass transtfer phenomenon.in wood during dring processes was analyzed. The results indicate: at initial stage of drying, moisture movement in wood i...According to modeling simulation and experiments study, the heat and mass transtfer phenomenon.in wood during dring processes was analyzed. The results indicate: at initial stage of drying, moisture movement in wood is due to capillary force, heat transfer is major effect, at end stage, moisture movement in wood is due to diffusive transport, heat transfer is less展开更多
基金supported by the Special Fund for Agroscientific Research in the Public Interest in China (201303133, 201203031)the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2011BAD16B14)+1 种基金the Construction of Modern Agricultural Industrial Technology System, Ministry of Agriculture, Chinathe Beijing Higher Education Young Elite Teacher Project, China (YETP0300)
文摘The photosynthetic characteristics of flag leaf and the accumulation and remobilization of pre-anthesis dry mass(DM) and nitrogen(N) in vegetable organs in nine wheat cultivars under different source-sink manipulation treatments including defoliation(DF), spike shading(SS) and half spikelets removal(SR) were investigated. Results showed that the SS treatment increased the photosynthetic rate(Pn) of flag leaf in source limited cultivar, but had no significant effect on sink limited cultivar. The SR treatment decreased the Pn of flag leaf. Grain DM accumulation was limited by source in some cultivars, in other cultivars, it was limited by sink. Grain N accumulation was mainly limited by source supply. The contribution of pre-anthesis dry mass to grain yield from high to low was stem, leaf and chaff, while the contribution of pre-anthesis N to grain N from high to low was leaf, stem and chaff. Cultivars S7221 and TA9818 can increase the contribution of remobilization of DM and N to grain at the maximum ratio under reducing source treatments, which may be the major reason for these cultivars having lower decrease in grain yield and N content under reducing source treatments.
文摘The presence of grassland biomes and species cannot be predicted by examining bottom up causes such as precipitation and temperature. Top down causes including herbivory and fire seem to be major controlling aspects with other factors secondary. We examined soil depth and competitive ability of two North American C4 grasses in a greenhouse experiment. Changes in dry mass were determined and competitive intensity was calculated for both species. Species were grown separately or together in pots 30, 90, or 180 cm deep. When grown in monoculture, Schizachyrium scoparium total and belowground dry mass increased from the 30 to 90 cm depth, with no further significant increase from 90 to 180 cm. Aboveground dry mass did not increase significantly with depth. Total dry mass of Buchloe dactyloides increased significantly with depth when grown in monoculture. Aboveground dry mass increased from 30 to 90 cm depth but not from 90 to 180 cm. Belowground dry mass of B. dactyloides did not increase significantly with depth. In 180 cm pots, 53% of S. scoparium root dry mass was in the top 30 cm;74% of B. dactyloides root dry mass was in the top 30 cm. Roots of B. dactyloides were not found deeper than 90 cm. Aboveground dry mass of S. scoparium was not different in mixture or monoculture at any depth. Buchloe dactyloides aboveground dry mass in mixture was significantly lower than monoculture at the 30 cm depth, but not at 90 or 180 cm. The greatest competitive intensity was in the shallow soil pots. Soil depth could partially explain mosaics found in C4 grasslands where both species were found together with S. scoparium on deeper soils and B. dactyloides on shallower soils.
基金jointly supported by the National Key Research and Development Program of China (2021YFC3101500)the National Natural Science Foundation of China (Grant Nos. 41830964, 42275062)
文摘The accurate forecasting of tropical cyclones(TCs)is a challenging task.The purpose of this study was to investigate the effects of a dry-mass conserving(DMC)hydrostatic global spectral dynamical core on TC simulation.Experiments were conducted with DMC and total(moist)mass conserving(TMC)dynamical cores.The TC forecast performance was first evaluated considering 20 TCs in the West Pacific region observed during the 2020 typhoon season.The impacts of the DMC dynamical core on forecasts of individual TCs were then estimated.The DMC dynamical core improved both the track and intensity forecasts,and the TC intensity forecast improvement was much greater than the TC track forecast improvement.Sensitivity simulations indicated that the DMC dynamical core-simulated TC intensity was stronger regardless of the forecast lead time.In the DMC dynamical core experiments,three-dimensional winds and warm and moist cores were consistently enhanced with the TC intensity.Drier air in the boundary inflow layer was found in the DMC dynamical core experiments at the early simulation times.Water vapor mixing ratio budget analysis indicated that this mainly depended on the simulated vertical velocity.Higher updraft above the boundary layer yielded a drier boundary layer,resulting in surface latent heat flux(SLHF)enhancement,the major energy source of TC intensification.The higher DMC dynamical core-simulated updraft in the inner core caused a higher net surface rain rate,producing higher net internal atmospheric diabatic heating and increasing the TC intensity.These results indicate that the stronger DMC dynamical coresimulated TCs are mainly related to the higher DMC vertical velocity.
文摘According to modeling simulation and experiments study, the heat and mass transtfer phenomenon.in wood during dring processes was analyzed. The results indicate: at initial stage of drying, moisture movement in wood is due to capillary force, heat transfer is major effect, at end stage, moisture movement in wood is due to diffusive transport, heat transfer is less