Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yi...Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yield by optimizing dry-matter allocation to different organs under different environments.A three-year field experiment was conducted using four maize cultivars with differing lodging resistances and five growing environments in 2018–2020.Lodging-susceptible(LS)cultivars on average yielded more than lodging-resistant(LR)cultivars when lodging was not present.The yield components kernel number per ear(KN)and thousand-kernel weight(TKW)were both negatively correlated with lodging resistance traits(stalk bending strength,rind penetration strength,and dry matter weight per internode length).Before silking,the LR cultivar Lishou 1(LS1)transported more assimilates to the basal stem,resulting in a thicker basal stem,which reduced dry matter allocation to the ear and in turn KN.The lower KN of LS1 was also due partly to the lower plant height(PH),which increased lodging resistance but limited plant dry matter production.In contrast,the LS cultivars Xianyu 335(XY335)and Xundan 20(XD20)produced and allocated more photoassimilates to ears,but limited dry matter allocation to stems.After silking,LS cultivars showed higher TKW than LR cultivars as a function of high photoassimilate productivity and high assimilate allocation to the ear.The higher lodging resistance of LS1 was due mainly to the greater assimilate allocation to stem after silking and lower PH and ear height(EH).High-yielding and high-LR traits of Fumin(FM985)were related to optimized EH and stem anatomical structure,higher leaf productivity,low assimilate demand for kernel formation,and assimilate partitioning to ear.A high presilking temperature accelerated stem extension but reduced stem dry matter accumulation and basal stem strength.Post-silking temperature influences lodging resistance and yield more than other environmental factors.These results will be useful in understanding the tradeoffs between KN,KW,and LR in maize and environmental influences on these tradeoffs.展开更多
[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high...[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high-yield winter wheat cultivar Jimai 22 as the experimental material, field experiment was conducted during 2008- 2010. A total of 3 planting patterns were designed, uniform row, wide-narrow row and furrow. Under each planting pattern, total four irrigation patterns were designed, no irrigation (Wo), irrigation at jointing state (Wl), irrigation at jointing and anthesis stages (W2) and irrigation at jointing, anthesis and milking stages (W3), and the irri- gation amount per treatment was all 60 mm. [Result] Under the three planting pat- terns, with the increased irrigation amount, the total water consumption of the exper- imental field increased; the proportion of irrigation in the total water consumption in- creased, and that of soil water consumption in the total water consumption de- creased significantly. Compared with W0 treatment, various irrigation treatments sig- nificantly increased the post-anthesis dry matter accumulation in wheat plants; with the increased irrigation amount, the grain yield under the three planting patterns all increased, while the water use efficiency (WUE) decreased. Under the same irriga- tion conditions, compared with other two planting patterns, furrow planting increased the total water consumption of the experimental field, increased the proportion of soil water consumption in the total water consumption, and improved the WUE and wheat grain yield. [Conclusion] Under the experimental conditions, considering both wheat grain yield and WUE, furrow planting with moderately deficit irrigation at joint- ing and anthesis stages is more suitable for the winter wheat production in North China Plain.展开更多
We studied gas-exchange, chlorophyll pigments, lipid peroxidation, antioxidant enzymes, and biomass partitioning responses in seedlings of four wolfberry species (Lycium chinense Mill. var. potaninii (Pojark.) A. M...We studied gas-exchange, chlorophyll pigments, lipid peroxidation, antioxidant enzymes, and biomass partitioning responses in seedlings of four wolfberry species (Lycium chinense Mill. var. potaninii (Pojark.) A. M. Lu, Lycium chinense Mill., Lycium barbarum L., and Lycium yunnanense Kuang & A. M. Lu) under four water supply regimes. In all four species, drought affected seedlings in terms of chlorophyll content, net photosynthesis rate (Pn)' transpiration rate (E), and lipid peroxidation. Drought also increased some antioxidant enzyme activities, such as peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). Significant changes in dry biomass partitioning also occurred in response to water stress. In particular, dry biomass of leaves and fruits decreased significantly. L. chinense Mill. and L. barbarum L. possessed greater drought tolerance and exhibited superior antioxidant processing ability and other related physiological traits compared to the other two species. L. chinense Mill. was the most tolerant to all levels of drought. In contrast,L, yunnanense Kuang & A. M. Lu was more affected by water supply and had the lowest resistance to drought stress. These findings would provide some important information regarding genetic resources for future forest tree improvement in relation to drought tolerance.展开更多
基金supported by the project of National Key Research and Development Program of China(2016YFD0300301 and 2017YFD0300603)The 2115 Talent Development Program of China Agricultural University。
文摘Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yield by optimizing dry-matter allocation to different organs under different environments.A three-year field experiment was conducted using four maize cultivars with differing lodging resistances and five growing environments in 2018–2020.Lodging-susceptible(LS)cultivars on average yielded more than lodging-resistant(LR)cultivars when lodging was not present.The yield components kernel number per ear(KN)and thousand-kernel weight(TKW)were both negatively correlated with lodging resistance traits(stalk bending strength,rind penetration strength,and dry matter weight per internode length).Before silking,the LR cultivar Lishou 1(LS1)transported more assimilates to the basal stem,resulting in a thicker basal stem,which reduced dry matter allocation to the ear and in turn KN.The lower KN of LS1 was also due partly to the lower plant height(PH),which increased lodging resistance but limited plant dry matter production.In contrast,the LS cultivars Xianyu 335(XY335)and Xundan 20(XD20)produced and allocated more photoassimilates to ears,but limited dry matter allocation to stems.After silking,LS cultivars showed higher TKW than LR cultivars as a function of high photoassimilate productivity and high assimilate allocation to the ear.The higher lodging resistance of LS1 was due mainly to the greater assimilate allocation to stem after silking and lower PH and ear height(EH).High-yielding and high-LR traits of Fumin(FM985)were related to optimized EH and stem anatomical structure,higher leaf productivity,low assimilate demand for kernel formation,and assimilate partitioning to ear.A high presilking temperature accelerated stem extension but reduced stem dry matter accumulation and basal stem strength.Post-silking temperature influences lodging resistance and yield more than other environmental factors.These results will be useful in understanding the tradeoffs between KN,KW,and LR in maize and environmental influences on these tradeoffs.
基金Supported by Scientific and Technological Development Plan of Shandong Province(2014GNC113001)Open Fund for National Key Laboratory of Crop Biology(2014KF11)
文摘[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high-yield winter wheat cultivar Jimai 22 as the experimental material, field experiment was conducted during 2008- 2010. A total of 3 planting patterns were designed, uniform row, wide-narrow row and furrow. Under each planting pattern, total four irrigation patterns were designed, no irrigation (Wo), irrigation at jointing state (Wl), irrigation at jointing and anthesis stages (W2) and irrigation at jointing, anthesis and milking stages (W3), and the irri- gation amount per treatment was all 60 mm. [Result] Under the three planting pat- terns, with the increased irrigation amount, the total water consumption of the exper- imental field increased; the proportion of irrigation in the total water consumption in- creased, and that of soil water consumption in the total water consumption de- creased significantly. Compared with W0 treatment, various irrigation treatments sig- nificantly increased the post-anthesis dry matter accumulation in wheat plants; with the increased irrigation amount, the grain yield under the three planting patterns all increased, while the water use efficiency (WUE) decreased. Under the same irriga- tion conditions, compared with other two planting patterns, furrow planting increased the total water consumption of the experimental field, increased the proportion of soil water consumption in the total water consumption, and improved the WUE and wheat grain yield. [Conclusion] Under the experimental conditions, considering both wheat grain yield and WUE, furrow planting with moderately deficit irrigation at joint- ing and anthesis stages is more suitable for the winter wheat production in North China Plain.
基金supported by the National Natural Science Foundation of China (31360191, 31660220)the Natural Science Foundation of Ningxia Hui Autonomous Region, China (NZ16121)the Self-option and Foundation of Ningxia Academy of Agriculture and Forestry Sciences, China (YES-16-0402, NKYZ-16-0402)
文摘We studied gas-exchange, chlorophyll pigments, lipid peroxidation, antioxidant enzymes, and biomass partitioning responses in seedlings of four wolfberry species (Lycium chinense Mill. var. potaninii (Pojark.) A. M. Lu, Lycium chinense Mill., Lycium barbarum L., and Lycium yunnanense Kuang & A. M. Lu) under four water supply regimes. In all four species, drought affected seedlings in terms of chlorophyll content, net photosynthesis rate (Pn)' transpiration rate (E), and lipid peroxidation. Drought also increased some antioxidant enzyme activities, such as peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). Significant changes in dry biomass partitioning also occurred in response to water stress. In particular, dry biomass of leaves and fruits decreased significantly. L. chinense Mill. and L. barbarum L. possessed greater drought tolerance and exhibited superior antioxidant processing ability and other related physiological traits compared to the other two species. L. chinense Mill. was the most tolerant to all levels of drought. In contrast,L, yunnanense Kuang & A. M. Lu was more affected by water supply and had the lowest resistance to drought stress. These findings would provide some important information regarding genetic resources for future forest tree improvement in relation to drought tolerance.