期刊文献+
共找到2,552篇文章
< 1 2 128 >
每页显示 20 50 100
Long Term Effects of Farming System on Soil Water Content and Dry Soil Layer in Deep Loess Profile of Loess Tableland in China 被引量:11
1
作者 CHENG Li-ping LIU Wen-zhao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第6期1382-1392,共11页
Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep... Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep loess proifle, which is critical for maintaining the function of the“soil water pool”is rarely studied because deep proifle soil samples are dififcult to collect. In this study, four experimental plots were established in 2005 to represent different farming systems on the Changwu Tableland:fallow land, fertilized cropland, unfertilized cropland, and continuous alfalfa. The soil water content in the 15-m-deep loess proifles was monitored continuously from 2007 to 2012 with the neutron probe technique. The results showed that temporal variations in soil water proifles differed among the four farming systems. Under fallow land, the soil water content increased gradually over time, ifrst in the surface layers and later in the deep soil layers. In contrast, the soil water content decreased gradually under continuous alfalfa. The distributions of soil water in deep soil layers under both fertilized and unfertilized cropland were relatively stable over time. Thus farming system signiifcantly affected soil water content. Seven years after the start of the experiment, the soil water contents in the 15-m-deep proifles averaged 23.4%under fallow land, 20.3%under fertilized cropland, 21.6%under unfertilized cropland, and 16.0%under continuous alfalfa. Compared to measurements at the start of the experiment, both fallow land and unfertilized cropland increased soil water storage in the 15-m loess proifles. In contrast, continuous alfalfa reduced soil water storage. Fertilized cropland has no signiifcant effect on soil water storage. These results suggest that deep soil water can be replenished under the fallow and unfertilized farming systems. Dry soil layers (i.e., those which have soil water content less than the stable ifeld water capacity) in the subsoil of the Changwu Tableland region can be classiifed as either temporary dry soil layers or persistent dry soil layers. Temporary dry soil layers, which typically form under annual crops, often disappear during wet years. Persistent dry soil layers generally develop under perennial vegetation. Even after removing the vegetation, persistent dry soil layers remain for several decades. This study provides information useful for the conservation and utilization of soil water resources in the Loess Tableland. 展开更多
关键词 farming system temporal variability soil water dried soil layer Loess Plateau
下载PDF
Characteristics of In-Situ Soil Water Hysteresis Observed through Multiple-Years Monitoring
2
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2024年第5期162-175,共14页
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa... A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate. 展开更多
关键词 Atmospheric Conditions Field Water Regimes Hysteretic Behaviors soil Moisture Conditions soil Water Characteristic Curves Specific Water Capacity Wetting-drying Cycles
下载PDF
Revegetation with artificial plants improves topsoil hydrological properties but intensifies deep-soil drying in northern Loess Plateau,China 被引量:8
3
作者 ZHANG Qingyin JIA Xiaoxu +1 位作者 ZHAO Chunlei SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2018年第3期335-346,共12页
Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type an... Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type and human management measures. We focused on the analysis of the effects of vegetation type on soil hydrological properties and soil moisture variation in the 0–400 cm soil layer based on a long-term(2004―2016) experimental data in the northern Loess Plateau region, China. Soil bulk density(BD), saturated soil hydraulic conductivity(Ks), field capacity(FC) and soil organic carbon(SOC) in 2016, as well as the volumetric soil moisture content during 2004–2016, were measured in four vegetation types, i.e., shrubland(korshinsk peashrub), artificial grassland(alfalfa), fallow land and cropland(millet or potato). Compared with cropland, revegetation with peashrub and alfalfa significantly decreased BD and increased Ks, FC, and SOC in the 0–40 cm soil layer, and fallow land significantly increased FC and SOC in the 0–10 cm soil layer. Soil water storage(SWS) significantly declined in shrubland and grassland in the 40–400 cm soil layer, causing severe soil drought in the deep soil layers. The study suggested that converting cropland to grassland(alfalfa) and shrubland(peashrub) improved soil-hydrological properties, but worsened water conditions in the deep soil profile. However, natural restoration did not intensify deep-soil drying. The results imply that natural restoration could be better than revegetation with peashrub and alfalfa in terms of good soil hydrological processes in the semi-arid Loess Plateau region. 展开更多
关键词 soil drying soil hydrological property soil moisture vegetation restoration Loess Plateau
下载PDF
Heavy soil drying during mid-to-late grain filling stage of the main crop to reduce yield loss of the ratoon crop in a mechanized rice ratooning system 被引量:6
4
作者 Chang Zheng Yuechao Wang +4 位作者 Shen Yuan Sen Xiao Yating Sun Jianliang Huang Shaobing Peng 《The Crop Journal》 SCIE CSCD 2022年第1期280-285,共6页
Yield loss(Y_(Loss)) in the ratoon crop due to crushing damage to left stubble from mechanical harvesting of the main crop is a constraint for wide adoption of mechanized rice ratooning technology.Soil drying before t... Yield loss(Y_(Loss)) in the ratoon crop due to crushing damage to left stubble from mechanical harvesting of the main crop is a constraint for wide adoption of mechanized rice ratooning technology.Soil drying before the harvest of the main crop has been proposed to overcome this problem.The objective of this study was to determine the effect of soil drying during the mid-to-late grain filling stage of the main crop on grain yield of the ratoon crop in a mechanized rice ratooning system.Field experiments were conducted to compare Y_(Loss) between light(LD) and heavy(HD) soil drying treatments in Hubei province,central China in 2017 and 2018.Y_(Loss) was calculated as the percentage of yield reduction in the ratoon crop with the main crop harvested mechanically,relative to the grain yield of the ratoon crop with the main crop harvested manually.In comparison with LD,soil hardness was increased by 42.8%-84.7% in HD at the 5-20 cm soil depth at maturity of the main crop.Soil hardness at 5 and 10 cm depths reached respectively 4.05 and 7.07 kg cm^(-2) in HD.Soil drying treatment did not significantly affect the grain yield of the main crop.Under mechanical harvesting of the main crop,HD increased the grain yield of the ratoon crop by 9.4% relative to LD.Consequently,Y_(Loss) was only 3.4% in HD,in contrast to 16.3% in LD.The differences in grain yield and Y_(Loos) between the two soil drying treatments were explained mainly by panicles m^(-2),which was increased significantly by HD in the track zone of the ratoon crop compared with LD.These results suggest that heavy soil drying practice during the mid-to-late grain filling stage of the main crop is effective for reducing Y_(Loss) of the ratoon crop in a mechanized rice ratooning system. 展开更多
关键词 Crushing damage Mechanical harvesting Ratoon rice soil drying Yield loss
下载PDF
Polyamines mediate the effect of post-anthesis soil drying on starch granule size distribution in wheat kernels 被引量:2
5
作者 Yunji Xu Mengting Qiu +3 位作者 Yinyin Li Xiyang Qian Junfei Gu Jianchang Yang 《The Crop Journal》 SCIE CAS CSCD 2016年第6期444-458,共15页
Polyamines(PAs) are important endogenous plant growth regulators responding to environmental stress and mediating many physiological processes including grain filling in cereals.This study investigated whether PAs med... Polyamines(PAs) are important endogenous plant growth regulators responding to environmental stress and mediating many physiological processes including grain filling in cereals.This study investigated whether PAs mediate the effect of post-anthesis soil drying on starch granule size distribution,starch content,and weight of superior and inferior kernels of wheat(Triticum aestivum L.).Two wheat cultivars were grown in pots.Three treatments,well-watered(WW),moderate soil drying(MD) and severe soil drying(SD),were imposed from 9 days post-anthesis until maturity.PA levels in kernels and small,medium and large granules were measured.The results showed that superior kernels had much higher free spermidine(Spd) and free spermine(Spm) concentrations,larger volumes of medium starch granules,and smaller-sized large granules than did inferior kernels under all the treatments.Compared to WW,MD significantly increased the concentrations of free Spd and free Spm,activities of soluble starch synthase and granule-bound starch synthase,volume of medium granules,and starch content and kernel weight of inferior kernels,and decreased the size of large granules.SD produced the opposite effect.Application of Spd or Spm to spikes produced effects similar to those of MD,and application of an inhibitor of Spd and Spm synthesis produced effects similar to those of SD.These results suggest that PAs mediate the effect of post-anthesis soil drying on starch biosynthesis in wheat kernels by regulating key enzymes in starch synthesis and that elevated PA levels under MD increase the volume of medium granules and kernel weight of inferior kernels. 展开更多
关键词 Polyamines Starch granule size distribution soil drying Triticum aestivum L.(wheat)
下载PDF
Identification of microRNAs regulating grain filling of rice inferior spikelets in response to moderate soil drying post-anthesis 被引量:1
6
作者 Zhenning Teng Yinke Chen +9 位作者 Youqing Yuan Yaqiong Peng Yake Yi Huihui Yu Zhenxie Yi Jianchang Yang Yan Peng Meijuan Duan Jianhua Zhang Nenghui Ye 《The Crop Journal》 SCIE CSCD 2022年第4期962-971,共10页
The grain filling of inferior spikelets is much less complete than that of superior spikelets in rice cultivars with large panicles and numerous spikelets and is promoted by moderate soil drying(MD)post-anthesis.A gro... The grain filling of inferior spikelets is much less complete than that of superior spikelets in rice cultivars with large panicles and numerous spikelets and is promoted by moderate soil drying(MD)post-anthesis.A growing body of evidence has shown that microRNAs function in regulating grain development.However,little is known about the mechanism of microRNA control of grain filling of inferior spikelets in response to MD.In this study,grain filling of inferior spikelets was promoted by MD treatment in Nipponbare.Small-RNA profiling at the most active grain-filling stage was conducted in inferior spikelets under control(CK)and MD treatment.Of 521 known and 128 novel miRNAs,38 known and 9 novel miRNAs were differentially expressed between the CK and MD treatments.Target genes of differentially expressed miRNAs were involved in multiple developmental and signaling pathways associated with catalytic activity,carbohydrate metabolism,and other functions.Both miR1861 and miR397 were upregulated by MD,leading to a decrease in OsSBDCP1 and OsLAC,two negative regulators of SSIIIa activity and BR signaling,respectively.In contrast,miR1432 abundance was reduced by MD,resulting in upregulation of OsACOT and thus an elevated content of both ABA and IAA.These results suggest that both starch synthesis and phytohormone biosynthesis are regulated by differentially expressed miRNAs in inferior spikelets in response to MD treatment.Our results suggest the molecular mechanisms by which miRNAs regulate grain filling in inferior spikelets of rice under moderate soil drying,providing potential application in agriculture to increase rice yields by genetic approaches. 展开更多
关键词 Moderate soil drying Grain filling Inferior spikelet MicroRNA RICE
下载PDF
Spatiotemporal variation of soil organic carbon in the cultivated soil layer of dry land in the South-Western Yunnan Plateau, China 被引量:4
7
作者 ZHAO Ji-xia DAI Fu-qiang +2 位作者 HE Shou-jia ZHANG Qing LIU Gang-cai 《Journal of Mountain Science》 SCIE CSCD 2017年第12期2484-2497,共14页
The dynamics of soil organic carbon(SOC)in cropland is one of the central issues related to both soil fertility and environmental safety. However, little information is available at county level regarding the spatiote... The dynamics of soil organic carbon(SOC)in cropland is one of the central issues related to both soil fertility and environmental safety. However, little information is available at county level regarding the spatiotemporal variability of SOC in the southwestern mountainous region of China. Thus, this study aimed to explore spatiotemporal changes of SOC in the cultivated soil layer of dry land in Mojiang County,Yunnan Province, China. Data were obtained from the second national soil survey(SNSS) of 1985 and soil tests for fertilizer application carried out by the Mojiang Agricultural Bureau in 2006. The ANOVA test was applied to determine any significant differences between the datasets, while semivariogram analysis was performed on geostatistics via an ordinary Kriging method in order to map spatial patterns of soil organic carbon density(SOCD). The results revealed that SOCD in the cultivated soil layer significantly decreased from 3.93 kg m^(-2) in 1985 to 2.89 kg m^(-2) in 2006, with a total soil organic carbon stock(SOCS) decrease of 41.54×10~4 t over the same period. SOCS levels fell most markedly in yellow-brown soil at a rate of51.52%, while an increase of 8.70% was found in the analysed latosol. Geostatistical analysis also showed that the recorded changes in SOCD between 1985 and2006 were spatially structured. The decreasing trend might be attributed to the combined action of intense cultivation, major crop residue removal without any protective tillage measures, unreasonable fertilization and natural climatic diversity inducing a large decrease in SOC in the studied cultivated dry land region of Mojiang County. Therefore, management measures such as protective tillage should be undertaken in order to enhance soil C sequestration. 展开更多
关键词 soil organic carbon Spatiotemporal changes dry land Cultivated soil layer Yunnan Plateau
下载PDF
Effect of drying environment on engineering properties of an expansive soil and its microstructure 被引量:10
8
作者 KONG Ling-wei WANG Min +1 位作者 GUO Ai-guo WANG Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1194-1201,共8页
This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under di... This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under different drying temperatures and relative humidity are carried out in a constant climate chamber. Then, the undisturbed samples, prepared in different drying environment, are used for the triaxial tests and mercury intrusion tests. It is found that the drying environment has noticeable influence on the engineering properties of expansive soils and it can be characterized by the drying rate. The linear shrinkage and strength increase with the decrease of the drying rate. The non-uniform deformation tends to happen in the high drying rate, which subsequently furthers the development of cracks. In addition, during the drying process, the variation of pores mainly focuses on the inter-aggregate pores and inter-particle pores. The lower drying rate leads to larger variation of pore size distribution. 展开更多
关键词 干燥环境 工程性质 微观结构 膨胀土 干燥速率 孔径分布 相对湿度 收缩试验
下载PDF
Post-fire soil nutrient dynamics in a tropical dry deciduous forest of Western Ghats,India 被引量:3
9
作者 Satyam Verma Dharmatma Singh +1 位作者 Ajeet Kumar Singh Shanmuganathan Jayakumar 《Forest Ecosystems》 SCIE CSCD 2019年第1期67-75,共9页
Background: The effect of forest fire on soil is complex and relatively less understood than its above ground effect.Understanding the effect of fire on forest soils can allow improving management of valuable forest e... Background: The effect of forest fire on soil is complex and relatively less understood than its above ground effect.Understanding the effect of fire on forest soils can allow improving management of valuable forest ecosystems as adequate and proper information is very important for efficient management. We have studied the recovery of soil properties after fire, using a chronosequence approach(two, five and fifteen years after fire and control). Soil samples were collected from each plot of four fire patches(B0, B2, B5 & B15) from three different depths viz. 0–10(Top), 10–20(Middle), and 20–30 cm(Bottom).Results: Soil organic carbon was lower than unburned plots after the fire and could not recover to the level of unburned plot(B0) even in 15 years. Total N, available P, and extractable K were lower 2-years and 5-years after the fire but are higher than unburned plot after 15-years. Available nitrogen(NO_3^- and NH_4^+) remain unchanged or higher than B0 in burned patches. Soil pH, Bulk Density, Water Holding Capacity, and Electrical Conductivity was lower initially after the fire. Forest fires have affected soil properties considerably. The response of soil properties varied with years after fire and soil depth.Conclusion: Forest fires occur very frequently in the study area. Significant quantities of carbon and total nitrogen are lost to the atmosphere by burning of litter, duff, and soil OM. Because nitrogen is one of the most important soil nutrients, the recapture of N lost by volatilization during a fire must receive special attention. Long-term studies are required to better understand the recovery of soil nitrogen. 展开更多
关键词 soil properties Western Ghats TROPICAL dry DECIDUOUS FOREST FOREST fire FOREST soilS
下载PDF
Development and application of an instrument for simulating wetting-drying cycles of expansive soils under loads 被引量:3
10
作者 DONG Jun-gui LV Hai-bo WU Wei 《Journal of Mountain Science》 SCIE CSCD 2018年第11期2552-2560,共9页
Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive ... Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive soils under different loads, and its testing error is verified. With this instrument,direct shear tests were performed on samples experiencing 0-6 cycles under vertical loads of 0 kPa,5 kPa, 15 kPa, and 30 k Pa. The results found that this instrument provides a new method for evaluating the effects of wetting–drying cycles on soils, and this method represents actual engineering conditions more accurately than do preexisting methods. It accurately controls the water content within 1% while simulating the specified loads at different soil depths.Cohesion is significantly affected by wetting–drying cycles, while the friction angle is not as sensitive to these cycles. Decrease in shear strength can be attributed to the fissures in soils caused by wetting–drying cycles. The existence of vertical loads effectively restricts shrinkage fissuring and cohesion attenuation, consequently inhibiting the attenuation of shear strength. 展开更多
关键词 周期 土壤 仪器 负担 模仿 开发 KPA 工程条件
下载PDF
Effect of cyclic drying and wetting on engineering properties of heavy metal contaminated soils solidified/stabilized with fly ash 被引量:3
11
作者 ZHA Fu-sheng LIU Jing-jing +1 位作者 XU Long CUI Ke-rui 《Journal of Central South University》 SCIE EI CAS 2013年第7期1947-1952,共6页
团结 / 稳定(S/S ) 是重金属污染了土壤的处理的最有效的方法之一。在团结 / 稳定的污染土壤上的周期的弄湿并且弄干的效果被调查。一系列测试节目,自由压缩力量(UCS ) 测试, TCLP 沥滤测试和扫描电子显微镜学(SEM ) 测试,在污染的... 团结 / 稳定(S/S ) 是重金属污染了土壤的处理的最有效的方法之一。在团结 / 稳定的污染土壤上的周期的弄湿并且弄干的效果被调查。一系列测试节目,自由压缩力量(UCS ) 测试, TCLP 沥滤测试和扫描电子显微镜学(SEM ) 测试,在污染的铅和锌上被执行土壤由苍蝇灰团结 / 稳定。UCS 和 S/S 的重金属离子的沥滤的特征污染了的测试结果表演玷污显著地随苍蝇灰内容的增加被改进。S/S 土壤的 UCS 第一随弄干并且弄湿周期的时间的增加增加,在到达山峰以后,它与它减少。当污染物质内容更低时(1 000 mg/kg ) , TCLP 集中稍微首先在周期的弄干并且弄湿下面减少,然后增加,而是变化是次要的。TCLP 集中在 5 000 mg/kg 的一个高污染物质内容下面是更高的,并且随弄干并且弄湿周期的时间的增加增加。扫描电子显微镜学(SEM ) 的结果测试与 UCS 测试和 TCLP 沥滤测试一致,它揭示在弄干并且弄湿周期以后设计稳定的污染土壤的性质的变化的微观机构。 展开更多
关键词 重金属污染土壤 干湿循环 工程性质 粉煤灰 稳定 固化 扫描电子显微镜 无侧限抗压强度
下载PDF
Responses of Dodonaea viscosa growth and soil biological properties to nitrogen and phosphorus additions in Yuanmou dry-hot valley 被引量:4
12
作者 WANG Xue-mei YAN Bang-guo +3 位作者 ZHAO Guang ZHAO Ji-xia SHI Liang-tao LIU Gang-cai 《Journal of Mountain Science》 SCIE CSCD 2018年第6期1283-1298,共16页
Nitrogen(N) and phosphorus(P) are limited nutrients in terrestrial ecosystems, and their limitation patterns are being changed by the increase in N deposition. However, little information concerns the plant growth and... Nitrogen(N) and phosphorus(P) are limited nutrients in terrestrial ecosystems, and their limitation patterns are being changed by the increase in N deposition. However, little information concerns the plant growth and the soil biological responses to N and P additions among different soils simultaneously, and these responses may contribute to understand plant-soil interaction and predict plant performance under global change. Thus, this study aimed to explore how N and P limitation changes in different soil types, and reveal the relationship between plant and soil biological responses to nutrient additions. We planted Dodonaea viscosa, a globally distributed species in three soil types(Lixisols, Regosols and Luvisols) in Yuanmou dry-hot valley in Southwest China and fertilized them factorially with N and P. The growth and biomass characters of D. viscosa, soil organic matter, available N, P contents and soil carbon(C), N, P-related enzyme activities were quantified. N addition promoted the growth and leaf N concentration of D. viscosa in Lixisols; N limitation in Lixisols was demonstrated by lower soil available N with higher urease activity. P addition promoted the growth and leaf P concentration of D. viscosa in Luvisols; severe P limitation in Luvisols was demonstrated by a higher soil available N: P ratio with higher phosphatase activity. Urease activity was negatively correlated with soil available N in Nlimited Lixisols, and phosphatase activity was negatively correlated with soil available P in P-limited Luvisols. Besides, the aboveground biomass and leaf N concentration of D. viscosa were positively correlated with soil available N in Lixisols, but the aboveground biomass was negatively correlated with soil available P. Our results show similar nutrient limitation patterns between plant and soil microorganism in the condition of enough C, and the nutrient limitations differ across soil types. With the continued N deposition, N limitation of the Lixisols in dry hot valleys is expected to be alleviated, while P limitation of the Luvisols in the mountaintop may be worse in the future, which should be considered when restoring vegetation. 展开更多
关键词 土壤类型 植物生长 生物性质 磷酸 山谷 干燥 生物资源
下载PDF
Effects of vegetation coverage and seasonal change on soil microbial biomass and community structure in the dry-hot valley region 被引量:3
13
作者 WU Han XIONG Dong-hong +5 位作者 XIAO Liang ZHANG Su YUAN Yong SU Zheng-an ZHANG Bao-jun YANG Dan 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1546-1558,共13页
Soil microorganisms are sensitive indicator of soil health and quality. Understanding the effects of vegetation biomass and seasonal change on soil microorganisms is vital to evaluate the soil quality and implement ve... Soil microorganisms are sensitive indicator of soil health and quality. Understanding the effects of vegetation biomass and seasonal change on soil microorganisms is vital to evaluate the soil quality and implement vegetation restoration. This study analyzed the soil phospholipid fatty acids(PLFAs) in fresh and withered Kudzu(Pueraria montana var. lobata) vegetation conditions in different seasons. The results showed that vegetation biomass and seasonal change significantly affected microbial biomass and its community structure. Both fresh and withered Kudzu cover significantly increased soil microbial biomass, and the growth effect of microbes in the soil with fresh Kudzu cover was more obvious than that with withered Kudzu cover. Compared with the dry season, the rainy season significantly increased the microbial biomass and the B/F(the ratio of bacterial to fungal PLFAs) ratio but dramatically reduced the G+/G-(the ratio of gram-positive to gram-negative bacteria PLFAs). Kudzu cover and seasonal change had a significant effect on microbial structure in soil covered by higher vegetation biomass. Furthermore, soil temperature and moisture had different correlations with specific microbial biomass in the two seasons. Our findings highlight the effect of Kudzu vine cover on the soil microenvironment and soil microhabitat, enhancing the soil quality in the Dry-hot Valley of Jinsha River, Southwest China. 展开更多
关键词 土壤微生物 生物资源 土壤健康 植被恢复 季节 山谷 干燥 社区
下载PDF
SLOPE LITHOLOGIC PROPERTY, SOIL MOISTURE CONDITION AND REVEGETATION IN DRY-HOT VALLEY OF JINSHA RIVER 被引量:5
14
作者 XIONGDong-hong ZHOUHong-yi +1 位作者 YANGZhong ZHANGXin-bao 《Chinese Geographical Science》 SCIE CSCD 2005年第2期186-192,共7页
The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely... The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years’ research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed. 展开更多
关键词 再种植 土壤湿度 干热峡谷 金沙江 岩石性质
下载PDF
A novel model to assess soil productivity in the dry-hot valleys of China 被引量:3
15
作者 DUAN Xing-wu HAN Xu +2 位作者 HU Jin-ming FENG De-tai RONG Li 《Journal of Mountain Science》 SCIE CSCD 2017年第4期705-715,共11页
Accurate evaluation of soil productivity has been a long-standing challenge. Although numerous models for productivity assessment exist, most are cumbersome to use and require substantial parameter inputs. We develope... Accurate evaluation of soil productivity has been a long-standing challenge. Although numerous models for productivity assessment exist, most are cumbersome to use and require substantial parameter inputs. We developed a new empirical soil productivity model based on field investigations of soil erosion, soil physicochemical properties, and crop yields in the dry-hot valleys(DHVs) in China. We found that soil p H, and organic matter and available potassium contents significantly affected crop yields under eroded conditions of the DHVs. Moreover, available potassium content was the key factor affecting soil productivity. We then modified an existing soil productivity model by adding the following parameters: contents of effective water, potassium, organic matter, and clay, soil p H, and root weighting factor. The modified soil productivity model explained 63.5% of the crop yield. We concluded that the new model was simple, realistic, and exhibited strong predictability. In addition to providing an accurate assessment of soil productivity, our model could potentially be applied as a soil module in comprehensive crop models. 展开更多
关键词 土壤生产力 干热河谷地区 评估模型 中国 速效钾含量 土壤PH值 生产力模型 作物产量
下载PDF
Effects of Air-Drying on the Inorganic Phosphorus Forms in Soils
16
作者 FENGKe TANGYan WANGXiao-li LUHai-ming ZHAOHai-tao 《Agricultural Sciences in China》 CAS CSCD 2005年第6期463-468,共6页
After 90 days cultivation of five different plants (rye grass, lupin, buckwheat, rape and amaranth) in three soils (Yellowbrown soil, Paddy soil and Red soil), fresh soil samples were collected and inorganic phosphoru... After 90 days cultivation of five different plants (rye grass, lupin, buckwheat, rape and amaranth) in three soils (Yellowbrown soil, Paddy soil and Red soil), fresh soil samples were collected and inorganic phosphorus (Pi) fractions weremeasured before and after air-drying. The results clearly indicated that the total Pi and their composition differed significantlyamong soil types. The air-drying process increased the total Pi in yellow brown soil and in paddy soil, while decreased thatin red soil. The total Pi could vary to 70% of that before air-drying. The Pi forms in different soils changed to differentextent after air-drying. As to yellow brown soil, Al-P decreased, while O-P and Ca-P increased; as to paddy soil, Al-P andCa-P increased, while Fe-P and O-P remained; as to red soil, Al-P and Fe-P increased, Ca-P remained and O-P reducedobviously. Growth of different plants in soils had effects on Pi forms during the process of air-drying. Therefore, forchemical study of soil phosphorus, application of fresh soil samples can provide more reliable results. 展开更多
关键词 Inorganic phosphorus soil AIR-dryING
下载PDF
Influence of Dry Density on Soil-Water Retention Curve of Unsaturated Soils and Its Mechanism Based on Mercury Intrusion Porosimetry
17
作者 李博 陈宇龙 《Transactions of Tianjin University》 EI CAS 2016年第3期268-272,共5页
The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained ... The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller interconnected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens. 展开更多
关键词 土壤水分特征曲线 土壤干密度 非饱和土 压汞法 土壤样品 土壤含水量 体积含水量 机制
下载PDF
Unravelling Effects of Temperature and Soil Moisture Stress Response on Development of Dry Root Rot [<i>Rhizoctonia bataticola</i>(Taub.)] Butler in Chickpea
18
作者 Mamta Sharma Suresh Pande 《American Journal of Plant Sciences》 2013年第3期584-589,共6页
Erratic rainfalls and rise in temperature have become more frequent under the changing scenario of climate particularly in semiarid tropics. As a consequence of it, a drastic shift of chickpea diseases have been recor... Erratic rainfalls and rise in temperature have become more frequent under the changing scenario of climate particularly in semiarid tropics. As a consequence of it, a drastic shift of chickpea diseases have been recorded throughout the major chickpea growing regions in India and elsewhere. Dry root rot (DRR) caused by Rhizoctonia bataticola (Taub.) Butler [Pycnidial stage: Macrophomina phaseolina (Tassi) Goid] was found as a potentially emerging constraint to chickpea production than wilt (Fusarium oxysporum f. sp. ciceris). Increasing incidence of DRR indicate strong influence of climate change variables such as temperature and moisture on the development of disease. The present study therefore was conducted to quantify the role of temperature and soil moisture associated with infection, colonization and development of DRR under controlled environment. The DRR incidence was significantly affected by high temperature and soil moisture deficit. Out of five temperature regimes (15?C, 20?C, 25?C, 30?C and 35?C) and four moisture levels (40%, 60%, 80% and 100%), a combination of high temperature (35?C) and soil moisture content (60%) predisposes chickpea to DRR. The study clearly demonstrates that high temperature coupled with soil moisture deficit is the climate change variables predisposing chickpea to R. bataticola infection, colonization and development. 展开更多
关键词 CHICKPEA Climate Change Drought dry Root ROT soil Moisture TEMPERATURE
下载PDF
Effects of Soil Moisture on Dynamic Distribution of Dry Matter Between Winter Wheat Root and Shoot 被引量:4
19
作者 CHENXiao-yuan LIUXiao-ying LUOYuan-pei 《Agricultural Sciences in China》 CAS CSCD 2003年第10期1144-1150,共7页
The dynamic relationship of dry matter accumulation and distribution between winter wheat root and shoot was studied under different soil water conditions. The dry matter accumulation in root was greatly influenced by... The dynamic relationship of dry matter accumulation and distribution between winter wheat root and shoot was studied under different soil water conditions. The dry matter accumulation in root was greatly influenced by water stress, so as to the final root weight of the treatment with 40% field moisture capacity(FMC) was less than 1/4 of that of the treatment with 80% FMC on average. Water stress during the 3-leaf stage to the tillering stage had the greatest influence on root, and the influence of water stress during the jointing stage to the booting stage on shoot was greater than root. However, water stress during the tillering stage to the booting stage had a balanced effect on root and shoot, and the proportion of dry matter that distributed to root and shoot was almost the same after rewatering. Water recovery during the jointing stage to booting stage could promote R/S, but the increasing degree was related to the duration of water limitation. Soil water condition had the lowest effect on R/S during the flowering stage to the filling stage and the maximal effect on R/S during the jointing stage to the heading stage, R/S of 40% FMC treatment was 20.93 and 126.09% higher than that of 60% FMC and 80% FMC treatments respectively at this period. 展开更多
关键词 soil moisture Winter wheat Root-shoot relation dry matter
下载PDF
Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation 被引量:24
20
作者 ZHOU Qun JU Cheng-xin +4 位作者 WANG Zhi-qin ZHANG Hao LIU Li-jun YANG Jian-chang ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1028-1043,共16页
This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than... This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than check rice. Two super rice cultivars and two elite check rice cultivars were grown in pots with three soil moisture levels, well watered (WW), moderate water deficit (MWD) and severe water deficit (SWD). Two cultivars, each for super rice and check rice, were grown in field with three irrigation regimes, alternate wetting and moderate drying (AWMD), alternate wetting and severe drying (AWSD) and conventional irrigation (CI). Compared with that under WW, grain yield was significantly decreased under MWD and SWD treatments, with less reduction for super rice than for check rice. Super rice had higher percentage of productive tillers, deeper root distribution, higher root oxidation activity, and greater aboveground biomass production at mid and late growth stages than check rice, especially under WMD and WSD. Compared with CI,AWMD increased, whereasAWSD decreased grain yield, with more increase or less decrease for super rice than for check rice. Both MWD and SWD treatments and eitherAWMD orAWSD regime significantly increased WUE compared with WW treatment or CI regime, with more increase for super rice than for check rice. The results suggest that super rice has a stronger ability to cope with soil water deficit and holds greater promising to increase both grain yield and WUE by adoption of moderate AWD irrigation. 展开更多
关键词 super rice soil water deficit alternate wetting and drying (AWD) grain yield water use efficiency
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部