In this study, the Single Factor Test(SFT) was used to optimize the pre-freezing conditions of L. plantarum KLDS1.0391(KLDS1.0391). Further, the Freeze-Drying Protective Agents(FDPA) of KLDS1.0391 was optimized ...In this study, the Single Factor Test(SFT) was used to optimize the pre-freezing conditions of L. plantarum KLDS1.0391(KLDS1.0391). Further, the Freeze-Drying Protective Agents(FDPA) of KLDS1.0391 was optimized by Response Surface Methodology(RSM). The optimum pretreatment conditions were as the follows: initial concentration of KLDS1.0391 was 1011 CFU · m L-1 and KLDS1.0391 was pre-freezed at –80℃ for 8 h to achieve the survival rate of 46.21%. The main components of FDPA were skim milk, sucrose, sodium glutamate and Tween-80. And the influence of four factors on the survival rate of KLDS1.0391 in freeze-drying was in order as the follows: skim milk〉sucrose〉Tween-80〉sodium glutamate. The optimal FDPA composition was skim milk 11.3%, sucrose 9.8%, sodium glutamate 5.1% and Tween-80 0.2%. Under the above conditions, the survival rate of the cells was 82.98%. Comparing the predicted values, the relative error was 0.37% and the difference was not significant, which indicated that the established model could effectively reflect the actual protection of FDPA to KLDS1.0391.展开更多
The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumul...The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumulation and nutrient quality of maize were systematically studied by field experiments and instrumental analysis using maize varieties of different maturities as test materials.The results showed that the accumulation of dry matter was enhanced by an increased dosage of a dehydrating agent.When the dehydrating agent dosage reached 1800 mL•hm-2,the dry matter accumulation of early-maturing varieties increased by 24.1 g,and the water content decreased by 8.08%.Different maize varieties were treated with the same dose;early-maturing varieties showed significant effects on grain dry matter accumulation,and kernel dry matter accumulation increased by 7%.The effects of different doses on grain dehydration were obvious,and the effects on different maize varieties varied.Medium-ripening maize varieties showed the most significant effect,with a 19.5%reduction in water content.The effects of dehydrating agent doses on maize yield,grain nutrient quality and seed germination rate were not significant.Therefore,a dehydrating agent promoted the accumulation of dry matter in grain and accelerated the rapid dehydration.展开更多
Because inflammation plays a key role in the pathogenesis of dry eye disease and Sjogren's syndrome, topical anti-inflammatory agents such as corticosteroids and cyclosporine A have been used to treat inflammation...Because inflammation plays a key role in the pathogenesis of dry eye disease and Sjogren's syndrome, topical anti-inflammatory agents such as corticosteroids and cyclosporine A have been used to treat inflammation of the ocular surface and lacrimal gland. Systemic biological agents that target specific immune molecules or cells such as tumor necrosis factor(TNF)-α, interferone-α, interleukin(IL)-1, IL-6, or B cells have been used in an attempt to treat Sjogren's syndrome. However, the efficacy of systemic biological agents, other than B-cell targeting agents, has not yet been confirmed in Sjogren's syndrome. Several studies have recently evaluated the efficacy of topical administration of biological agents targeting cytokines in the treatment of dry eye disease. Topical blockade of IL-1 by using IL-1 receptor antagonist could ameliorate clinical signs and inflammation of experimental dry eye. Using a mouse model of desiccating stress-induced dry eye, we have demonstrated that topical application of a TNF-α blocking agent, infliximab, could improve tear production and ocular surface irregularity, decrease inflammatory cytokines and Th-1 CD4+ cells on the ocular surface, and increase gobletcell density in the conjunctiva. Although controversy still remains, the use of topical biological agents targeting inflammatory cytokines may be a promising therapy for human dry eye disease.展开更多
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us...Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.展开更多
The most economically important disease of cultivated grapevines worldwide is powdery mildew(PM)caused by the ascomycete fungus Erysiphe necator.The majority of grapevine cultivars used for wine,table grape,and dried ...The most economically important disease of cultivated grapevines worldwide is powdery mildew(PM)caused by the ascomycete fungus Erysiphe necator.The majority of grapevine cultivars used for wine,table grape,and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics.However,this species has little genetic resistance against E.necator meaning that grape production is highly dependent on the frequent use of fungicides.The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide.This review will outline the strategies being used to increase our understanding of the molecular basis of V.vinifera susceptibility to this fungal pathogen.It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm.Finally,it addresses future research priorities which will be important in the rapid identification,evaluation,and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard.展开更多
Based on the study of damage mechanisms of generalized water blocking and related water-blocking removal methods, the drying agents for enhancing tight gas reservoir recovery were developed, and the basic properties, ...Based on the study of damage mechanisms of generalized water blocking and related water-blocking removal methods, the drying agents for enhancing tight gas reservoir recovery were developed, and the basic properties, injection mode and drying effect of the drying agents were evaluated. The chemical effect, thermal effect, salt resistance, salt resistance formulas and delay mechanism of the drying agent systems for different types of tight reservoirs were investigated through lab experiment. The solubility and solubilization properties of supercritical carbon dioxide on drying agent systems were tested.The injection mode of dissolving drying agent in supercritical carbon dioxide was proposed. The mechanisms of supercritical carbon dioxide with water in micropores of formation matrix were analyzed. Micro-pore structures and seepage characteristics of reservoir before and after drying were compared. Based on the characterization in combination of NMR and laser etched pore structure model, drying effects of the drying agents on bound water of different occurrences were evaluated qualitatively and quantitatively. Lattice Boltzmann method was used to evaluate the influence of drying effect on gas micro-seepage ability.The influence of drying effect on productivity and production performance of gas well was analyzed by numerical simulation.The drying effect can greatly reduce water saturation of tight reservoir and improve the gas seepage capacity in near wellbore and fractures. This work can provide guidance for developing new measures in enhancing recovery of tight gas reservoirs.展开更多
Introduction Cationic starches are a series of products of which various sorts with different properties and usages can all be produced via cationic reactions by using different types of etherification agents under di...Introduction Cationic starches are a series of products of which various sorts with different properties and usages can all be produced via cationic reactions by using different types of etherification agents under different conditions. As an additive and strengthening agent,展开更多
基金Supported by the Outstanding Youth Scientists Foundation of Harbin City(2014RFYXJ006)
文摘In this study, the Single Factor Test(SFT) was used to optimize the pre-freezing conditions of L. plantarum KLDS1.0391(KLDS1.0391). Further, the Freeze-Drying Protective Agents(FDPA) of KLDS1.0391 was optimized by Response Surface Methodology(RSM). The optimum pretreatment conditions were as the follows: initial concentration of KLDS1.0391 was 1011 CFU · m L-1 and KLDS1.0391 was pre-freezed at –80℃ for 8 h to achieve the survival rate of 46.21%. The main components of FDPA were skim milk, sucrose, sodium glutamate and Tween-80. And the influence of four factors on the survival rate of KLDS1.0391 in freeze-drying was in order as the follows: skim milk〉sucrose〉Tween-80〉sodium glutamate. The optimal FDPA composition was skim milk 11.3%, sucrose 9.8%, sodium glutamate 5.1% and Tween-80 0.2%. Under the above conditions, the survival rate of the cells was 82.98%. Comparing the predicted values, the relative error was 0.37% and the difference was not significant, which indicated that the established model could effectively reflect the actual protection of FDPA to KLDS1.0391.
基金Supported by the Research and Development Plan of Applied Technology in Heilongjiang Province(GA19B104)。
文摘The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumulation and nutrient quality of maize were systematically studied by field experiments and instrumental analysis using maize varieties of different maturities as test materials.The results showed that the accumulation of dry matter was enhanced by an increased dosage of a dehydrating agent.When the dehydrating agent dosage reached 1800 mL•hm-2,the dry matter accumulation of early-maturing varieties increased by 24.1 g,and the water content decreased by 8.08%.Different maize varieties were treated with the same dose;early-maturing varieties showed significant effects on grain dry matter accumulation,and kernel dry matter accumulation increased by 7%.The effects of different doses on grain dehydration were obvious,and the effects on different maize varieties varied.Medium-ripening maize varieties showed the most significant effect,with a 19.5%reduction in water content.The effects of dehydrating agent doses on maize yield,grain nutrient quality and seed germination rate were not significant.Therefore,a dehydrating agent promoted the accumulation of dry matter in grain and accelerated the rapid dehydration.
基金Supported by The Chonnam Natinal University Hospital Biomedical Research Institute(CRI 11076-21 and 13906-22)Forest Science and Technology Projects,No.S121313L050100provided by Korea Forest Service
文摘Because inflammation plays a key role in the pathogenesis of dry eye disease and Sjogren's syndrome, topical anti-inflammatory agents such as corticosteroids and cyclosporine A have been used to treat inflammation of the ocular surface and lacrimal gland. Systemic biological agents that target specific immune molecules or cells such as tumor necrosis factor(TNF)-α, interferone-α, interleukin(IL)-1, IL-6, or B cells have been used in an attempt to treat Sjogren's syndrome. However, the efficacy of systemic biological agents, other than B-cell targeting agents, has not yet been confirmed in Sjogren's syndrome. Several studies have recently evaluated the efficacy of topical administration of biological agents targeting cytokines in the treatment of dry eye disease. Topical blockade of IL-1 by using IL-1 receptor antagonist could ameliorate clinical signs and inflammation of experimental dry eye. Using a mouse model of desiccating stress-induced dry eye, we have demonstrated that topical application of a TNF-α blocking agent, infliximab, could improve tear production and ocular surface irregularity, decrease inflammatory cytokines and Th-1 CD4+ cells on the ocular surface, and increase gobletcell density in the conjunctiva. Although controversy still remains, the use of topical biological agents targeting inflammatory cytokines may be a promising therapy for human dry eye disease.
基金supported by the National Key Research and Development Program of China,China(2019YFA0705102)the National Natural Science Foundation of China,China(22179144,22005332)。
文摘Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.
基金Researchers in IBD’s laboratory were supported by grants from the Australian Grape and Wine AuthorityResearch projects in WQ’s laboratory were sponsored by the USDA-NIFA grantsMissouri State University and the Missouri Wine and Grape Board.
文摘The most economically important disease of cultivated grapevines worldwide is powdery mildew(PM)caused by the ascomycete fungus Erysiphe necator.The majority of grapevine cultivars used for wine,table grape,and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics.However,this species has little genetic resistance against E.necator meaning that grape production is highly dependent on the frequent use of fungicides.The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide.This review will outline the strategies being used to increase our understanding of the molecular basis of V.vinifera susceptibility to this fungal pathogen.It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm.Finally,it addresses future research priorities which will be important in the rapid identification,evaluation,and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard.
基金Supported by the National Natural Science Foundation of China (51534006)。
文摘Based on the study of damage mechanisms of generalized water blocking and related water-blocking removal methods, the drying agents for enhancing tight gas reservoir recovery were developed, and the basic properties, injection mode and drying effect of the drying agents were evaluated. The chemical effect, thermal effect, salt resistance, salt resistance formulas and delay mechanism of the drying agent systems for different types of tight reservoirs were investigated through lab experiment. The solubility and solubilization properties of supercritical carbon dioxide on drying agent systems were tested.The injection mode of dissolving drying agent in supercritical carbon dioxide was proposed. The mechanisms of supercritical carbon dioxide with water in micropores of formation matrix were analyzed. Micro-pore structures and seepage characteristics of reservoir before and after drying were compared. Based on the characterization in combination of NMR and laser etched pore structure model, drying effects of the drying agents on bound water of different occurrences were evaluated qualitatively and quantitatively. Lattice Boltzmann method was used to evaluate the influence of drying effect on gas micro-seepage ability.The influence of drying effect on productivity and production performance of gas well was analyzed by numerical simulation.The drying effect can greatly reduce water saturation of tight reservoir and improve the gas seepage capacity in near wellbore and fractures. This work can provide guidance for developing new measures in enhancing recovery of tight gas reservoirs.
文摘Introduction Cationic starches are a series of products of which various sorts with different properties and usages can all be produced via cationic reactions by using different types of etherification agents under different conditions. As an additive and strengthening agent,