The North China Plain(NCP)is a severe water shortage region,especially during the wheat growing season.Understanding the response of grain yield and water availability in winter wheat cultivars(Triticum aestivum L.)is...The North China Plain(NCP)is a severe water shortage region,especially during the wheat growing season.Understanding the response of grain yield and water availability in winter wheat cultivars(Triticum aestivum L.)is important to adjust planting structure under groundwater reducible exploitation in rainfed dry years of NCP.Field experiments were conducted at the Luancheng Agroecosystem Experiment Station of the Chinese Academy of Sciences,Hebei,China.Two different drought resistant winter wheat cultivars(Jinmai47 and Shiluan02-1)were grown under rainfed conditions during four years of 2010-2011,2011-2012,2012-2013 and 2013-2014.Grain yield and its components,aboveground biomass(AB),dry matter accumulation translocation efficiency,water consumption,water use efficiency at field scale,and photosynthetic characteristics were measured.The results showed that Jinmai47 rapidly accumulated AB by higher tiller and photosynthetic potential comparing with those of Shiluan02-1.Its grain yield was 16.49%higher than that of the drought-sensitive winter wheat variety Shiluan02-1 during the four rainfed years.However,the dry matter remobilization efficiency(DMRE)and contribution of dry matter remobilization from heading stage to maturity stage to grain(CDMRE)of Shiluan02-1 was higher than those of Jinmai47.The average water use efficiency at grain yield level(WUEy),WUE at aboveground biomass level(WUEab),and WUE at grain yield under rainy conditions(WUEr)of Jinmai47 were 11.08%,16.41%,and 17.21%higher than those of Shiluan02-1.There was a significant difference in the WUEab and WUEr between the two wheat cultivars.The two wheat varieties under drought condition have different growing strategies.Jinmai47 has more tiller number,earlier vigor,and higher AB than Shiluan02-1,helping it to adapt to the fluctuations in the environment.展开更多
This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation ...This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50–70-yr, 100–120-yr, and 200–250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3℃ and 0.7℃, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870–2000, at a rate of 0.56°± 0.42℃(100 yr)^(-1); however, temperatures recorded in the 20 th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981–1100 and AD1201–70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°–30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20 th century warming can primarily be attributed to a mega El Nino–Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.展开更多
基金The present study was supported by the National Key Research and Development Program of China(2016YFD0300808)National Key Technology R&D Program of China(2013BAD05B02)+1 种基金Hebei Province S&T Project(18226419D)National Science Foundation of China(31100191).
文摘The North China Plain(NCP)is a severe water shortage region,especially during the wheat growing season.Understanding the response of grain yield and water availability in winter wheat cultivars(Triticum aestivum L.)is important to adjust planting structure under groundwater reducible exploitation in rainfed dry years of NCP.Field experiments were conducted at the Luancheng Agroecosystem Experiment Station of the Chinese Academy of Sciences,Hebei,China.Two different drought resistant winter wheat cultivars(Jinmai47 and Shiluan02-1)were grown under rainfed conditions during four years of 2010-2011,2011-2012,2012-2013 and 2013-2014.Grain yield and its components,aboveground biomass(AB),dry matter accumulation translocation efficiency,water consumption,water use efficiency at field scale,and photosynthetic characteristics were measured.The results showed that Jinmai47 rapidly accumulated AB by higher tiller and photosynthetic potential comparing with those of Shiluan02-1.Its grain yield was 16.49%higher than that of the drought-sensitive winter wheat variety Shiluan02-1 during the four rainfed years.However,the dry matter remobilization efficiency(DMRE)and contribution of dry matter remobilization from heading stage to maturity stage to grain(CDMRE)of Shiluan02-1 was higher than those of Jinmai47.The average water use efficiency at grain yield level(WUEy),WUE at aboveground biomass level(WUEab),and WUE at grain yield under rainy conditions(WUEr)of Jinmai47 were 11.08%,16.41%,and 17.21%higher than those of Shiluan02-1.There was a significant difference in the WUEab and WUEr between the two wheat cultivars.The two wheat varieties under drought condition have different growing strategies.Jinmai47 has more tiller number,earlier vigor,and higher AB than Shiluan02-1,helping it to adapt to the fluctuations in the environment.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA050800)the Key Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-TZ-G10)the National Natural Science Foundation of China (Grant No.41671201 and 91525101)
文摘This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50–70-yr, 100–120-yr, and 200–250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3℃ and 0.7℃, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870–2000, at a rate of 0.56°± 0.42℃(100 yr)^(-1); however, temperatures recorded in the 20 th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981–1100 and AD1201–70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°–30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20 th century warming can primarily be attributed to a mega El Nino–Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.