In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Comp...In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs.展开更多
As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A ph...As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A phase autofocusing algorithm for compressed ISAR imaging is presented. In the algorithm, phase autofocusing for the sparse ISAR echoes is accomplished using the eigenvector method. Experimental results validate the effectiveness of the algorithm.展开更多
The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou...The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.展开更多
With the 2008 Ms6.1 Panzhihua earthquake as a case study, we demonstrate that the focal depth of the main shock can be well constrained with two approaches: (1) using the depth phase sPL and (2) using full wavefo...With the 2008 Ms6.1 Panzhihua earthquake as a case study, we demonstrate that the focal depth of the main shock can be well constrained with two approaches: (1) using the depth phase sPL and (2) using full waveform inversion of local and teleseismic data. We also show that focal depths can be well constrained using the depth phase sPL with single broadband seismic station. Our study indicates that the main shock is located at a depth of ii kin, much shallower than those from other studies, confirming that the earthquake occurs in upper crust. Aftershocks are located in the depth range of 11 16 kin, which is consistent with a ruptured near vertical fault whose width is about 10 km, as expected for an Ms6.1 earthquake.展开更多
Inversion of droplet size distribution in two-phase flow from light scattering has been considered involved because it is in general reduced to the solution of Fredholm integral equation of the first kind that was alw...Inversion of droplet size distribution in two-phase flow from light scattering has been considered involved because it is in general reduced to the solution of Fredholm integral equation of the first kind that was always ill-posed. By using the Rosin-Rammler distributiona priori as the particulate size distribution model in the liquid-gas two-phase flow, a method via the solution of a two-parameter nonlinear programming problem to determine the droplet size distribution has been developed. A measurement system based on the technique is designed and applied in the shock test of blades of steam turbine. 100-hours continuous monitoring of the droplets in the liquid-gas two-phase flow of 8.0 Pa and 120 °C was performed and the details of the experiments are given out. It is shown that the technique is simple and efficient for in-situ real time measuring droplets in the liquid-gas two-phase flow.展开更多
Predicting the failure time of a landslide is considered as challenging work in the field of landslide research,and inverse velocity is proved to be an effective and convenient method.The onset of acceleration(OOA)has...Predicting the failure time of a landslide is considered as challenging work in the field of landslide research,and inverse velocity is proved to be an effective and convenient method.The onset of acceleration(OOA)has a crucial effect on the prediction failure time from the inverse velocity method.However,a simple method to identify OOA points is lacked,and most of the identifications rely on expert experience.Therefore,this study presents an application of a simple framework developed to identify the OOA by analyzing monitoring velocity data in three steps,including selection of the absolute value of velocity,reliable area identification and OOA identification.A new parameter based on exponential moving average(EMA)is developed to identify the landslide OOA.The framework is applied to three historical case studies to test its practicability and effectiveness.The forecasting results show a good correspondence between the accuracy rate and the coefficient of determination(R2).The predicted failure time according to the linear extrapolation starting from the identified OOA points is acceptable with a high R2 and high accuracy.展开更多
基金Supported by the funding from "135" Projects Fund of CAS-QIBEBT Director Innovation FoundationThink-Tank Mutual Fund of Qingdao Energy Storage Industry Scientific Research+3 种基金Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technologythe Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09010105)National Natural Science Foundation of China(51502319)Shandong Provincial Natural Science Foundation(ZR2016BQ18)
文摘In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs.
基金Supported by the National Natural Science Foundation of China(61071165)the Program for NewCentury Excellent Talents in University(NCET-09-0069)the Defense Industrial Technology Development Program(B2520110008)~~
文摘As same as the conventional inverse synthetic aperture radar(ISAR), the compressed ISAR also requires the echo signal based motion compensation, which consists of the range alignment and the phase autofoeusing. A phase autofocusing algorithm for compressed ISAR imaging is presented. In the algorithm, phase autofocusing for the sparse ISAR echoes is accomplished using the eigenvector method. Experimental results validate the effectiveness of the algorithm.
基金funded by the Natural Science Foundation of Jiangsu Province(BK20210252)。
文摘The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.
基金financial supported by Joint Seismological Science Foundation of China (No.200808078)National Natural Science Foundation of China (Nos.40821160549 and 41074032)
文摘With the 2008 Ms6.1 Panzhihua earthquake as a case study, we demonstrate that the focal depth of the main shock can be well constrained with two approaches: (1) using the depth phase sPL and (2) using full waveform inversion of local and teleseismic data. We also show that focal depths can be well constrained using the depth phase sPL with single broadband seismic station. Our study indicates that the main shock is located at a depth of ii kin, much shallower than those from other studies, confirming that the earthquake occurs in upper crust. Aftershocks are located in the depth range of 11 16 kin, which is consistent with a ruptured near vertical fault whose width is about 10 km, as expected for an Ms6.1 earthquake.
文摘Inversion of droplet size distribution in two-phase flow from light scattering has been considered involved because it is in general reduced to the solution of Fredholm integral equation of the first kind that was always ill-posed. By using the Rosin-Rammler distributiona priori as the particulate size distribution model in the liquid-gas two-phase flow, a method via the solution of a two-parameter nonlinear programming problem to determine the droplet size distribution has been developed. A measurement system based on the technique is designed and applied in the shock test of blades of steam turbine. 100-hours continuous monitoring of the droplets in the liquid-gas two-phase flow of 8.0 Pa and 120 °C was performed and the details of the experiments are given out. It is shown that the technique is simple and efficient for in-situ real time measuring droplets in the liquid-gas two-phase flow.
基金funded by the National Natural Science Foundation of China(Grant NO.41772324)the Open Foundation of Chengdu Center of China Geological Survey。
文摘Predicting the failure time of a landslide is considered as challenging work in the field of landslide research,and inverse velocity is proved to be an effective and convenient method.The onset of acceleration(OOA)has a crucial effect on the prediction failure time from the inverse velocity method.However,a simple method to identify OOA points is lacked,and most of the identifications rely on expert experience.Therefore,this study presents an application of a simple framework developed to identify the OOA by analyzing monitoring velocity data in three steps,including selection of the absolute value of velocity,reliable area identification and OOA identification.A new parameter based on exponential moving average(EMA)is developed to identify the landslide OOA.The framework is applied to three historical case studies to test its practicability and effectiveness.The forecasting results show a good correspondence between the accuracy rate and the coefficient of determination(R2).The predicted failure time according to the linear extrapolation starting from the identified OOA points is acceptable with a high R2 and high accuracy.